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1. EXECUTIVE SUMMARY
This report explores the role of explanation in human 
engagement with artificial intelligence / machine 
learning (AI / ML).

For AI / ML to augment human intelligence (in terms 
of extending a human’s cognitive capabilities through 
the provision of sophisticated analysis on massive data 
sets), there needs to be sufficient common ground in 
the way humans and AI / ML communicate.

In this report, we assume that interactions between 
humans and AI / ML occur in a system in which 
cooperation between humans and AI / ML is one 
interaction among many, e.g. humans cooperate with 
other humans; humans programme the AI / ML; 
humans could be involved in selecting and preparing 
the data that the algorithms use; the AI / ML could 
interact with other algorithms etc.

Not only is it important that humans and AI / ML 
establish common ground, but also that humans who 
communicate with each other using AI / ML share this 
common ground.

From this perspective, the term ‘explanation’ is the 
process by which common ground between interactions 
is established and maintained.

We have developed a framework to highlight this 
concept, and this is instantiated to show how different 
types of explanation can occur, each of which requires 
different means of support.

Primarily, an explanation involves an agreement on 
the features (in data sets or a situation) which the 
‘explainer’ and ‘explainee’ pay attention to and why 
these features are relevant.

We propose three levels of relevance:

	● ‘Cluster’ – In which a group of features typically 
occur together

	● ‘Belief’ – which defines a reason as to why such a 
cluster will occur

	● ‘Policy’ – which justifies the belief and relates this 
to action.

Agreement (on features and relevance) depends on 
the knowledge and experience of the explainer and 
‘explainee’, and much of the process of the explanation 
involves ensuring alignment between parties in terms 
of knowledge and experience.

We relate the concept of explanation developed here 
to concepts such as intelligibility and transparency in 
the AI / ML literature and provide guidelines that can 
inform decisions on the development, deployment, and 
use of AI / ML in operational settings.

From the framework of explanation developed in this 
report, we propose the following guidelines:

1.	 Explanations should include relevant causes 
Explanations should relate to beliefs in the 
relationship between features of a situation and 
the causes that can directly affect the event being 
explained (probability) or can explain most of the 
event (explanatory power); are plausible (construct 
validity); and if the cause was instigated by a 
person, deliberative.

2.	 Explanations should include relevant features 
Explanations should relate to the key features of 
the situation and the goals of the explainer and 
explainee.

3.	 Explanations should be framed to suit the 
audience 
Explainers should fit the explanation to suit the 
explainee’s understanding of the topic and what 
it is they wish to gain from the explanation (their 
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mental model and goals).

4.	 Explanations should be interactive 
Explainers should involve explainees in the 
explanation.

5.	 Explanations should be (where necessary) 
actionable 
Explainees should be given information that can 
be used to perform and / or improve future actions 
and behaviours. 



6

2. Project overview
Understanding The Problem Of Explanation When Using Artificial Intelligence In Intelligence Analysis

2. PROJECT OVERVIEW
The primary approach taken in this project is the 
development of a framework that can be used to predict 
how different types of explanation are developed and 
used. This is presented in Section 5.

In support of this approach, we conducted literature 
reviews of the concept of explanation in the human 
science (Appendix A) and in machine learning (ML) 
(Section 4). The literature reviews were complemented 
by workshops at the National Computer Security 
Centre in London. Two workshops were run, one 
in late November and one in early December 2019. 
Subsequent workshops were cancelled as the result of 
changes in working and travelling due to Covid-19. At 
each workshop, participants were drawn from a variety 
of organisations involved in security, i.e. including 
the Ministry of Defence, police forces, financial 
technology, and computer security. 

Each workshop involved up to eight participants and 
lasted from around 10am to 4pm (with an hour break 
for lunch). We did not, for obvious reasons, collect 
any demographic data from participants (apart from 
the first names they provided) and any information 
presented in this report has been sanitised for ‘Official’ 
security level.

The workshops began with a brief introduction to the 
project in terms of the project objectives (although we 
did provide much detail in order not to lead participants 
or the discussion). Following this, participants were 
asked to work in pairs or groups of three to discuss 
their experience of an activity in which data analytics 
(which might include ML) were deployed. This was 
captured in the form of Post-it notes (one for each task 
or step in the activity), which were laid out on the table 
to create simple process flow models of the activity 

Figure 1. Process model derived from workshop activity to describe intelligence analysis for disrupting trafficking
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(Figure 1). Versions of these are presented later in the 
report.

Broadly, the activities focused on identifying and 
preventing; countering or otherwise reducing threats; 
or increasing situation awareness or strategic advantage 
over adversaries. From the process flow models, 
participants were asked to indicate the stakeholders 
(individuals, organisations, computers) that would 
either perform tasks or would be affected by tasks in 
these activities. This ranged from the operatives (or 
sensors) collecting intelligence, through to analysts 
and to people involved in compiling, disseminating, 
and reading reports arising from these activities. 

For example, a report might, via journalists, be read 
some time after the activity by members of the public, 
or a summary report with high security classification 
might be read by a Senior Investigating Officer as part 
of a daily briefing, or a detailed analysis (perhaps with 
an even higher security rating) might be read by fellow 
analysts as part of the ongoing analysis. 

The examples highlighted the need to balance 
information security with the information needs of the 

stakeholders (and to ensure that undue inferences could 
not be drawn from whatever information was made 
available to stakeholders). These points are developed 
further in the report.

Participants were also asked to consider “what makes 
a ‘good’ explanation?” and “what are the benefits of 
ML?” They wrote single words or short phrases on 
Post-it notes, and these were grouped into ‘affinity 
diagrams’, i.e. placing related concepts together 
(Figure 2). Participants were invited to either add to 
these or to move the concepts themselves until there 
was consensus among the group that the resulting 
collections were organised appropriately. While 
the workshops were kept as open and qualitative as 
possible, several participants shared experiences of 
the activities that were discussed and perspectives on 
positive or negative deployment of ML (or other data 
analytics).

From the workshops, explanation often relies on the 
assumption that there is a relationship between an 
outcome (effect) and cause(s). This relationship could 
be defined in terms of relevance (to the situation, to 

Figure 2. What makes a good explanation as decided by attendees of the two workshops. Participants were also 
asked to group the words together based on whether they felt they fell under the same category.
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the explainer, or to the explainee). In this account, 
explanation can be divided into discrete but connected 
stages: In a specific situation, the explainer will explore 
known (or available) features, which combines sense-
making of the situation and the predicted consequences 
of the explanation for the explainee in terms of the 
assumed mental model, goals, and abilities of the 
explainee. 

Following this, features are selected in terms of their 
relevance and an explanation product is defined. 
The quality of an explanation can be evaluated (by 
explainer or explainee) and this could occur in a 
social context (in which explainer and explainee could 
discuss or otherwise negotiate the explanation until it 
was acceptable). In some circumstances, the explainer 
might anticipate this negotiation by modifying the 
content or structure of the explanation to better suit 
their model of the knowledge held by the explainee.

Overall, the focus group emphasised the importance 
of a transparent, understandable, and relevant 
explanation, together with the importance of using a 

shared language during an explanation. For example, 
only using terms and concepts that both the explainer 
and explainee are familiar with. This was largely 
parallel to what the literature stated, however, there 
were some key similarities and differences that we 
noticed. 

One major theme identified from analysing the 
workflows was that good explanation should be 
an interactive process, actively involving both the 
explainer and explainee(s). For instance, in Figure 1, 
the stages involved in disrupting trafficking are cyclical 
(as noted in the sense-making and intelligence analysis 
in Section A.6). This also implies that, at least to some 
extent, there is interaction between different parties 
involved in the process. This idea accords with Clark’s 
(2015) notion of common ground and Sperber and 
Wilson’s relevance theory (2002) (Section A.2). 

However, while many workshop attendees recognised 
barriers that prevented the bidirectional flow of 
information, it was apparent that explanation is still 
necessary and can still occur. This supported the notion 

Figure 3. Initial framework of how explanations are generated in humans
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that explainers create some model of the explainee 
and use this as a reference point when generating an 
explanation. Therefore, subsequent improvements 
to the framework considered how it would work and 
under different social situations and how the role of 
the explainee would change considering these.

Another aspect regarding explanation that was 
apparent in both the literature and the workshop was 
that there are different ‘levels’ of explanation. These 
different levels not only depended on the question 
asked, but the context the explanation occurred in. So, 
the environmental factors surrounding the explanation 
impacts the explanation produced. 

According to Hoffman et al. (2018), explanations can 
be separated into local and global categories. Local 
explanations are used to rectify a flaw in the explainee’s 
understanding, whereas a global explanation is used to 
broaden an explainee’s understanding of a topic (Klein 
et al., 2019; Hoffman et al., 2018). 

However, after hearing feedback from the focus 
groups, we felt that the levels of explanation ran deeper 
than this. Since the workshop attendees emphasised 
in discussions that an explanation must be actionable 
to be useful, we felt that there should be a separate 
level of explanation. In this level, the explainer must 
consider the actions of the explainee when generating 
the explanation. Before elaborating these points, we 
turn to the notions of explanation applied in ML.

We have used the information provided to complement 
our literature review (Appendix A) and to create a 
framework for explanation (Section 6).
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3. THE NEED FOR EXPLANATION IN AI 
SYSTEMS

1	  “AI in the UK: Ready, Willing and Able?,” report, UK Parliament (House of Lords) Artificial Intelligence Committee, 16 April 2017; https:// publications.
parliament.uk/pa/ld201719/ldselect/ldai/100/10002 .htm.
2	  https:///www.faml.org.resoureces/ principles-for-accountable-algorithms

According to a 2017 report from the AI Committee of 
the British Parliament:

“The development of intelligible AI systems 
is a fundamental necessity if AI is to 
become an integral and trusted tool in our 
society… Whether this takes the form of 
technical transparency, explainability, or 
indeed both, will depend on the context and 
the stakes involved, but in most cases we 
believe explainability will be a more useful 
approach for the citizen and the consumer.… 
We believe it is not acceptable to deploy any 
artificial intelligence system which could 
have a substantial impact on an individual’s 
life, unless it can generate a full and 
satisfactory explanation for the decisions 
it will take…. In cases such as deep neural 
networks, where it is not yet possible to 
generate thorough explanations for the 
decisions that are made, this may mean 
delaying their deployment for particular 
uses until alternative solutions are found”.1

AI systems should be capable of explaining any 
decisions that they make to people who will be 
affected by these decisions. Article 22 of the EU 
General Data Protection Regulation (GDPR) and 
the European Commission’s Ethics Guidelines for 
Trustworthy AI both emphasise that people have a 
right to an explanation from automated decisions 
that might affect them. The Fairness, Accountability, 
and Transparency in Machine Learning (FATML) 
campaign for accountable algorithms2 proposes that 
explainability should be able to present details, in 

non-technical language, on how an algorithm has 
reached a specific decision to any stakeholder (i.e. any 
individual who might be affected by that decision) if 
they ask for it. Additionally, the FATML guidelines 
note that there should be clear indication of who 
is responsible for the decision (particularly for any 
failures), that the algorithm should allow auditability 
of the decision process, should indicate the accuracy of 
data and process (i.e. in terms of sources of error and 
uncertainty), and should ensure that any decisions are 
fair (i.e. not biased against any demographics).

At root, these regulations and guidelines share the 
overarching goal of ensuring that any decision made 
using AI or ML should be explained to the humans 
who will act upon or be affected by the decision. One 
approach to the challenge of explanation is to focus on 
the algorithm itself: 

“Given an audience, an explainable 
Artificial Intelligence is one that produces 
details or reasons to make its functioning 
clear or easy to understand.” 

(Arrieta et al., 2020). 

While early forms of AI were sufficiently simple to have 
their rules open to inspection, recent developments in 
ML and AI have led to systems that are ‘black boxes’ 
from which it can be difficult to extract explanations 
that humans can understand (particularly if this is to 
occur with minimal knowledge of the inner workings 
of these algorithms). Broadly, “A computer program is 
said to learn from experience E with respect to some 
class of tasks T and performance measure P, if its 
performance at tasks in T, as measured by P, improves 
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with experience E.” [Mitchell, 1997, p.2]. From 
this, the learning arises from the training experience 
through which data are added to improve a model’s 
performance. This points to two factors that define the 
model: the first is the underlying statistical structure 
that defines the theoretical scope of a solution; the 
second is the algorithm in which this statistical 
structure is implemented. Let’s assume that the task, T, 
involves assigning an image to one category or another. 

The statistical structure assumes that the image can 
be decomposed into features, and that some (but 
not necessarily all) of these features will be strongly 
related to one of the categories. How the selection of 
features or definition of relationship is implemented 
will depend on the algorithm. Even before progressing 
with the report, think about how this process (of image 
decomposition followed by correlation of features 
to categories) might differ from visual perception 
performed by humans when recognising an image as, 
say, a cat rather than a dog. 

One of the differences is that humans are likely to use 
their prior knowledge and experience of categories 
in ways that ML algorithms do not (i.e. very few ML 
algorithms make use of the sort of common sense 
that humans apply). Another difference lies in the 
granularity at which humans or ML algorithms define 
a feature (i.e. humans will not decompose an image 
into its constituent pixels). While these differences 
ought to be obvious to the reader, they illustrate some 
of the stumbling blocks in the path towards explainable 
algorithms. 

Put simply, the definition of a feature; the process 
by which features are extracted and analysed; the 
underlying statistical structure that relates features 
to categories; and the processes by which these 
relationships are implemented are entirely different. 

From this perspective, should an explanation focus 
on the definition of features, the underlying statistical 
structure, and the implementation of the algorithm?

3.1 EXPLANATION AND 
RELATED TERMS
To understand what humans might require of 
explanation in AI, this project develops a framework 
for explanation inspired by research in the human 
and social sciences. In broad terms, explanation of 
an algorithm can be considered in line with a host 
of concepts in which a decision-maker provides 
an account of the rationale for that decision. Some 
examples of these concepts are given in Table 1.

There is some overlap of definitions in Table 1. For 
example, intelligibility, transparency, decomposability, 
and simulatability each refer to the human’s ability 
to understand how an algorithm is applied to data. In 
this respect, ‘explainability’ is related to the person’s 
knowledge of, and competence in, computer science 
/ mathematics (which could limit the explainability 
of the algorithm for people who do not possess such 
knowledge). For example, Figure 1 shows the steps 
required by a human to make sense of a ML algorithm 
(M) in a given state, ϕ, given a set of variables (x1…xn), 
and an output y.

Concept Definition

Intelligibility Human can understand the 
underlying algorithm

Understandability See above

Comprehensibility Human can understand the 
knowledge used by the algorithm

Interpretability Human can understand the 
meaning of an algorithm’s output

Transparency See Intelligibility. Also, 
algorithm can be explored

Decomposability Each element (step) of an 
algorithm has intelligibility

Simulatability Operation of the algorithm can 
be imagined by human 

Responsibility Human ultimately responsible for 
action arising from analysis

Table 1. Concepts related to AI / ML explanation
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In simulatability (Figure 4a), the human can 
understand the formulae that underpin the algorithm 
and perform calculations to produce identical results. 
In decomposibility (Figure 4b), the human can trace 
the effect of the different variables on the algorithm, 
perhaps by calculating output for different values of 
these variables. In transparency (Figure 4c), the human 
can interpret the algorithm’s output in terms of rules 
the define relationships between variables.

The relationship between explainability and a person’s 
knowledge of ML / AI, suggests that there is a 
possibility that a lack of technical knowledge of the 
algorithm can result in misconceptions [AI Literacy 
[25]] or the use of a black box algorithm can produce 
misunderstandings [AI Literacy [55]]. Having said that, 
there is evidence that simply visualising the workings 
of the algorithm is, even for experienced users of ML 
/ AI, insufficient to overcome problems in detecting, 
correcting, and responding to errors in the algorithm 
[Interpreting interpret[8]]. Indeed, such visualisation 
might encourage superficial evaluation (because the 
picture might feel plausible) and, as long as the output 
aligns with the analyst’s intuitions, the result might be 
accepted without question [Interpreting interpret…]. 
Even when the intuitions work against the output of the 
algorithm, and the analyst is suspicious, a visualisation 
might be insufficient to enable a detailed argument to 
be formulated.

One (possibly tongue-in-cheek) definition of 
explainability we encountered during conversations 

relating to this project was that an explanation (of 
a deep neural network) was simply the vector that 
describes the parameter weightings once the algorithm 
had settled on a solution. 

Such a perspective feels contrary to the aspiration for 
algorithms to provide explanation to any stakeholder. 
Having said that, contemporary neural networks 
(DNN, RNN, CNN etc.) do not easily lend themselves 
to either explanation of process or rationale for output. 
In this sense, even aside from the algorithm, it can 
be difficult to provide comprehensibility because the 
knowledge used by the algorithm might not be surfaced 
in a format that a human is able to perceive. 

For example, a neural network trained to distinguish 
the difference between a panda and a gibbon (Figure 
5) might focus on elements in the images at the pixel 
level, which are not perceptible to human viewers, 
and might group these into elements which are not 
meaningful to a human-understandable concept of 
either of these entities. Given this pixel-level analysis, 
spoofing or otherwise interfering with the ability of 
image recognition algorithms is now a popular activity 
in AI communities (and forms the basis of Adversarial 
Neural Net research in which pairs of AI systems 
are pitted against each other to disrupt recognition – 
primarily to learn robustness against such attacks).

If explanation cannot be based solely on the workings 
of the algorithms, then what other perspective could we 
take? The output of an algorithm could be considered 

Figure 4. Examples of an algorithm’s simulatability (a), decomposibility (b), and transparency (c) for a human 
observer [Arietta et al., 2020]
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in terms of its ability to produce a result that the 
human stakeholder could evaluate. As Table 2 implies, 
such evaluation could involve the algorithm being run 
on a set of data that were different from those on which 
it was trained. In this manner, the performance of the 
algorithm could be checked. An assumption here is 
that, once the algorithm could be shown to respond 
with accuracy, consistency etc. to novel data sets, one 
could accept its output. In this case, the stakeholder 
would be expected to trust the algorithm because it 
behaved in a way that was reliable.

An alternative (but logical) interpretation of this 
approach would be to assume that the human was 
able to run analysis on the same data used by the 
algorithm such that the output of these two analyses 
could be compared. While subject matter experts 
(SME) would be capable of analysing evidence or 
creating hypotheses for the situation which relate 
to the evidence, comparison of analyses could be 
problematic. 

First, one purpose of applying AI / ML is to handle 
volumes of data that would be difficult for the human 
to analyse. Consequently, it is difficult to conceive of 
situations in which there could be a comparison of 
data at scale. This would mean that any comparison 
would be on partial data sets (either ones that were 
small enough for the human to be able to compute 
mentally or ones that could be analysed using other 

mathematical tools) such that the outputs could be 
compared. However, this raises problems of how one 
might sample data sets to produce smaller sets that 
were sufficiently representative and robust to permit 
comparison that could be generalised to the full data 
set. From the perspective of human intuitions, the 
SME might be able to interpret a subset of features and 
map this to prior experience (but not run the complete 
analysis). If the ML output accords with this intuition 
it could be accepted (and, conversely, if it contradicts 
the intuition, it could be rejected). The point is that the 
analysis performed (by ML and human expert) are not 
comparable in terms of selected features or scale of 
analysis. 

Second, the analysis process applied by AI / ML is 
unlikely to mirror that of the SME, which means 
that comparison of process would not make sense. 
Consequently, any comparison would be at the level of 
outcome rather than process. As humans are adept are 
providing post-hoc rationalisation of output, there is a 
further problem that comparison could simply endorse 
the output of the AI / ML through the mere fact that 
the human was able to produce a plausible story for the 
data (even if this story bore no relation to the workings 
of the algorithm). This could be problematic because 
it precludes generalisation of the algorithm (or, worse, 
produces a human-understandable ‘story’ that is only 
loosely related to the output of the algorithm). As 
we shall see in Section 5, this problem of aligning 

Figure 5. Confusing a panda for a gibbon, in which a small change causes disruption to weighting in a convolutional 
neural net [Szegedy et al., 2014]
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the story to the underlying model can be applied to 
some of the proposed post-hoc approaches to support 
interpretability, such as LIME or SHAP. 

Third, even if it were possible to directly compare 
analysis processes (i.e. algorithm with human expert), 
it is likely that the human would use additional 
experiences and information that were not available to 
the AI / ML. Consequently, the knowledge used in the 
analysis is unlikely to be identical. Users’ experiences 
of ML and data science can have an impact on whether 
users trust the output of ML (Bhatt et al., 2020; Suresh 
et al., 2020; Kaur et al., 2020). Similarly, knowledge of 
the domain can influence trust in ML, e.g. people with 
lower knowledge of a domain might be more trusting 
of the ML (Nourani et al., 2020), presumably because 
they might not be able to critique the output (Merritt et 
al., 2015).

We conclude that explanation is not simply a 
function of the quality of the algorithm or the human 
stakeholder’s ability to make sense of the algorithm. 
Rather, there are a host of additional factors that 
relate to human interaction with algorithms (Table 
2). As Gunning (2019) proposed, in his discussion of 
DARPA’s Explainable Artificial Intelligence (XAI) 
programme, “XAI will create a suite of machine 
learning techniques that enables human users to 
understand, appropriately trust, and effectively manage 
the emerging generation of artificially intelligent 
partners.” From Table 2, the factors that might 
influence acceptance of AI / ML can also influence 
the way explanation is sought; in particular, Table 2 
raises concerns relating to understanding causality and 
the interpretation of risk. Both aspects imply a causal 
model that relates the knowledge used by the algorithm 
to the situation in which the knowledge applies, and 
which can project alternative states for the situation 
(either retrospectively to enable consideration of how 
situational states were caused or prospectively to 
enable consideration of the consequences of applying 
the decision). Of particular importance (to our 
discussion) is the notion of ‘partner’ in this quotation 
(in addition to ‘trust’ and ‘understand’) because a 

partner emphasises the social, interactive nature 
of the relationship between human and AI system. 
By implication, this social, interactive relationship 
can also refer to the ways in which explanations are 
provided. For the stakeholders involved in AI / ML, 
these causal models could involve information that 
goes beyond that which the algorithm is using (either 
because the human is considering situations that have 
not been modelled (in the form of what-if scenarios); 
or is considering information that is not part of the 
training data; or is considering second- or third-order 
consequences of the decision that lie outside the model 
parameters). 

In this respect, even the apparently modest proposal 
to make the algorithm interactive could be highly 
problematic because there would be limits to the 
extensibility or flexibility of the algorithm (one could 
not, for example, simply add a bundle of new data 
to the algorithm and expect it to produce a solution, 
particularly if the new data was in formats that had not 
been defined in the original data set).

Factor Definition

Trust Human accepts that the technology can 
perform the activity without risk

Trustworthiness Human has confidence that the algorithm 
will act as intended, even with new 
problem / data

Causality Ability of algorithm to go beyond 
discovered pattern in the data to allow 
prediction of future ‘effect’

Transferability Ability of algorithm to operate beyond the 
constraints of its training data

Informativeness Ability of algorithm’s output to be 
assimilated into human decision-making

Confidence Generalisation of stability and robustness

Fairness Socially acceptable output

Accessibility Interpretable by non-expert

Interactivity Humans able to challenge or tweak model

Security Protection of data and privacy

Table 2. Factors that might influence acceptance of AI 
/ ML [from Arriete et al., 2020]
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4. AUGMENTED INTELLIGENCE AND 
HUMAN DECISION-MAKING
Before discussing the nature of explanation, it would 
be useful to explore the role of augmented intelligence 
in human decision-making. Augmenting human 
intelligence is not simply the province of AI / ML but 
has a long history through which humans have sought 
to either offload cognitive activity or complement such 
activity by using physical media and machines. One 
perspective on this comes from theories of distributed 
cognition. 

For example, Hutchins describes the ways in which 
the speed of an aircraft (1995) or a ship (2014) are 
calculated using a combination of devices, procedures, 
and people. On the ship, the devices might include 
equipment used to perform sighting of landmarks 
or fixed points at known distances against which the 
ship’s movement can be timed, or nautical slide rules 
which support calculation of speed, or, in the aircraft 
cockpit, speed bugs in an aircraft to mark specific 
points on an airspeed indicator. The procedures might 
include the aircraft’s flight plan that has been tailored 
to a specific runway in a specific airport, or the rules 
used to collect and analyse data for calculating speed. 

The people might include a person on the ship’s bridge 
performing the sighting, another person performing 
the timing, and a third person marking a map and 
performing the calculations. Across these different 
examples, Hutchins noted that there was not a single 
point at which speed was calculated as such, but rather 
the procedures allowed collection, collation, and 
analysis of data from different devices and people who 
were interacting in pursuit of a common purpose. From 
this perspective, AI / ML could simply be another 
‘device’ or, depending on its complexity, it could be 
another person (or, at least, an intelligent agent who is 
part of the analysis team).

One of the reasons why explanation has been 
considered in terms of algorithmic transparency 
(see previous section) might be due to the device 
perspective. In this case, explanation becomes a matter 
of lifting the hood (on the algorithm) to allow humans 
to peer inside and appreciate the inner workings. 

However, this assumes that the human has the 
knowledge and willingness to interrogate these 
workings. It also, perhaps more fundamentally, misses 
the point that AI / ML also introduces (often opaquely) 
modifications to the analysis procedures (in terms of 
the requirements for data formatting, the algorithms 
applied to these data, or the weighting applied to 
different features in the data etc.) 

From this perspective, AI / ML is not simply an 
additional device which is introduced with no impact 
on procedures but, rather, causes a reallocation of 
functions such that some of the activities that had 
previously been performed by people or offloaded onto 
relatively passive devices that could store and process 
data, are now being performed by an (possibly) 
intelligent (but non-human) team member.

The relationship between humans and AI / ML can be 
considered in terms of levels of automation (Sheridan, 
1992). At the one extreme, there is a level of no 
automation, in which humans perform all the cognitive 
and physical activity with no support, and, at the other 
extreme, there is a level of full automation, in which 
the computer performs all the activity with no human 
intervention (and, typically, with no information 
passed to the human regarding activity or outcome). 

Between these extremes lie various levels which 
describe the allocation of activity or decision 
responsibility between human or computer. For 
example, lower levels might involve the human issuing 
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an instruction to the computer to perform an action 
and then vetting the output of the action, while higher 
levels might involve the computer autonomously 
beginning an action and then seeking approval from 
the human prior to completing the action. From this 
perspective, explanation could relate to several aspects 
of the action to be performed. 

For example, if there is a choice of options then 
explanation would provide justification for the 
chosen action, or if there is the possibility of different 
outcomes then explanation would provide justification 
for the chosen action in light of expected or experienced 
outcome, or if there was a range of interpretations of 
the situation in which an action could be performed, 
then explanation could relate to the interpretation of the 
situation (e.g. in terms of the selection of features that 
were defined as salient). From this, explanation would 
have a variety of meanings because it is motivated by 
a variety of choices, actions, features, and outcomes. 

For the human, making sense of the explanation 
could require knowledge of the situation in which 
the explanation was offered or the relationship 
between the explanation and background knowledge. 
In both cases, the receiver of the explanation (who 
we will refer to as the explainee) might not be able 
to interpret the explanation in terms of additional 
information that is not included in the content of 
the explanation. In human conversation, there is a 
wealth of strategies that the explainer uses to check 
the explainee’s understanding of an explanation, but 
these strategies are less apparent in ML. Furthermore, 
the appropriateness of the explanation that is offered 
would depend on the situation in which the actions are 
performed as well as the knowledge, skills, and abilities 
of the team members. Interestingly, there is far more 
attention in the literature on providing explanation 
from automation to humans than vice versa.

In a series of studies, we have been exploring the 
likelihood that humans would accept recommendations 
or follow guidance offered by a computer. Comparing 
human decision-making with automated support, 

Morar and Baber (2017) shows that, after a few trials, 
people can adapt their response to the computer’s 
accuracy (even when this is not explicitly stated). This 
was supported by a subsequent study (Baber et al., 
2019). 

This meant that, when the automated system had a 
reliability of 25%, people would rely on their own 
interpretation of the situation for the decision, but 
when the automated reliability was 81%, people would 
be more likely to rely on the computer. Overall decision 
accuracy was similar in both conditions (around 96%). 

Interestingly, decision accuracy was higher when 
the computer responded first (in the experiment, the 
computer and the person took turns to propose the 
answer and then the human would submit a decision). 

This was true even in the low-reliability conditions, 
which suggests that the computer’s answer provided 
constraints on the options for the human to consider. 
We assume that the automation would provide the 
best answer it could, and the role of the human would 
be to interpret this in terms of a model of the task (in 
this case road-traffic monitoring). As such, the ability 
of the human to work with such a model, in terms of 
situation awareness, is crucial (Baber et al., 2019). 

As users become more experienced in a task, so their 
ability to focus on key information improves. This was 
demonstrated by eye-tracking studies which show that 
experience leads to a solution involving three to four 
information sources (from a possible 12), and that 
the layout of the user interface can have a bearing on 
this activity (Starke and Baber, 2018). This search 
strategy can be modelled as optimal, i.e. a computer 
model (using a partially observable Markov decision 
process) that learned a policy to minimise search time 
while discovering the salience of information sources, 
produced similar behaviour to the humans in this task 
(Chen et al., 2017). 

However, when the reliability of the automation 
decreases, search strategy changes. That is, only when 
the reliability approaches 100% will the human sample 
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a selection of sources (even when these are visually 
cued by the computer), and when the reliability falls 
to 90% or lower, people are more likely to check all 
the information sources (Starke and Baber, 2020). A 
computer model of this search strategy demonstrates 
that restricted sampling is optimal when reliability 
is known to exceed 96% (Acharya et al., 2019). 
Taken together, these studies suggest that people can 
be sensitive to the reliability of decision support; 
that a decision that is less than perfect will alter the 
information sampling strategy of users (and we believe 
this influences their decision-making); and that 
interpreting the output of the decision support requires 
understanding of the domain (and we believe that this 
domain knowledge is probably more important than 
knowledge of the algorithm).

We note (from discussion at workshops conducted 
as part of this project) that the allocation of function 
between human and ML is not simply a matter of the 
human interpreting and reacting to the output. Rather, 
there are many points at which humans are involved in 
the process flow on ML. 

The following list is a generalised set of functions 
that humans might perform (and we would assume 
that these functions might be performed by different 
stakeholders with different appreciations of the 
underlying mathematics of the algorithm and / or 
different knowledge of the implications of the decision 
/ outcome for operations):

	● Identify and prepare relevant data sets

	● Select algorithm

	● Extract features and build model

	● Refine analytical model (e.g. hyperparameters)

	● Train model on test data

	● Run and test on unseen data

	● Refine model

	● Run on new data

While the computer will run the analysis, there is much 
in this list which requires human intervention and 
these could introduce opportunities for human biases 
(intentional or otherwise) to affect performance, e.g.:

	● through the selection of data (which might reflect 
social inequalities, sampling biases, lack of balance 
in the dataset, etc.)

	● through the selection of hyperparameters and the 
tuning and refining of algorithms (which could 
skew the model to produce output is a good fit, e.g. 
with high precision and recall scores, but which 
could lead to socially unacceptable outcomes if the 
results are fed into policy).

	● through the interpretation of good results (e.g. 
treating the results in terms of statistical models 
rather than consequences for policy and action).

For each of these functions (and for each type of 
stakeholder) the nature of explanation may differ. At 
its root, this means that explanation will not involve a 
one-size-fits-all solution but needs to respond to the 
nuances of differences in stakeholder or function.

When humans are provided with automated support 
for their decision-making, it is common to consider 
this relationship in terms of compliance, i.e. the extent 
to which the human will follow the recommendation of 
the computer, and reliance, i.e. the extent to which the 
human depends on the computer (Meyer, 2004). 

High levels of compliance and reliance could mean that 
the human is unquestionably following the computer 
and is not able (or willing) to perform the task. In this 
case, the human could be said to be over-trusting of the 
computer. 

At the other extreme, the human could be highly 
skeptical of the computer and unwilling to comply 
with its recommendations. From this perspective, the 
relationship between human and computer can be 
considered in terms of trust (itself a multi-factorial 
concept) and explanation would depend on the degree 
of trust between human and computer. Indeed, trust can 
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have a bearing on whether the explanation is believed 
(or whether there has been an error or obfuscation), 
or on whether the explanation is accepted (i.e. that 
explanation might be believed but the implications or 
consequences arising from the explanation might be 
doubted). 

While much of the research on these issues have 
focused on trust expressed by human towards the 
computer, one could assume that many of the 
developments in AI / ML have been founded on 
mistrust of the human. That is, the algorithms have 
been developed with a view to minimising the risks 
of human failure (say, because data are too complex, 
too numerous, or too ambiguous for humans to be able 
to process accurately). Ironically, perhaps, the role of 
the humans in AI / ML systems is often to provide a 
defence against the failure of the algorithms. 

From this perspective, explanation is related to the 
likelihood of disagreement (or, at least, the mismatch 
between the computer and human response to the 
data) to support agreement (or at least appreciation) 
of how the human or computer reached a particular 
conclusion. In one respect, this could relate to 
algorithmic transparency (with a focus on how the 
conclusion was reached). In another respect, this could 
relate to the setting of constraints on that conclusion, 
e.g. using counter-factual reasoning or variation of the 
weighting of features used in the analysis.
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5. EXPLANATION FRAMEWORK 
DEVELOPED IN THIS PROJECT
From the discussions in the workshops, the 
consideration of explanation in machine learning 
(Section 4), and the review of literature from human 
sciences (Appendix A), we have elaborated on the 
initial framework (Figure 6) to produce a definition of 
explanation. 

We propose that an explanation, E, involves the set 
of features in a situation to which a person pays 
attention to, a means of defining the relevance, R, of 
these features, and a (potential) aim of influencing 
action, A. From this, an explanation is generated 
when two parties, X1 and X2, in a situation, S, agree 
the features to which each party pays attention to and 
agrees as relevant, with a view to altering X2’s version 
of S or R such that this could, potentially, lead to an 
action (Figure 1). To illustrate the framework, we 
use the following motivating example (we apply the 
framework to examples collected from workshops in 
the next section):

A hacker has obtained access to email 
accounts in your organisation and is sending 
scurrilous messages that appear to originate 
from people you work with. An investigation 
by your IT team, supported by an Intelligent 
Network Analysis System, results in a change 
to the management of the email system, and 
the problem is resolved. As a result of this, 
email users must create new passwords.

We define ‘situation’ as a set of features that can be 
described symbolically as words, numbers, pictures, 
etc. That is, S = {fi….fn}. A feature is some aspect of 
the situation to which people can attend. Individuals 
in a situation will ground their situation awareness, si, 
by attending to relevant features. That is, the attended 
set of features is a subset of all the features in the 
situation, si ⊆ S. These features imply (a) a string of 
causal reasoning that the other people are assumed to 
be able to perform and (b) to be sufficient to explain 
the situation. Features are assumed to be external, in 

Figure 6. A framework for explanation
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that anyone in a situation ought to be able to attend to 
the same features. 

However, we accept that there will be situations in 
which some features might need to be inferred and 
might not be immediately accessible to all parties. In 
the example used in this paper (of resolving a hacked 
email system), the situation can be defined by features 
that include measures of network activity (defined 
in terms of normal and unusual), opportunities for 
resolving unusual activity, information to include in 
reports about network activity, and its resolution, etc.

The first challenge in explanation is to ensure that 
the set of features to which the explainer, X1, pays 
attention to will overlap with the set of the explainee, 
X2. That is, an initial goal in providing an explanation 
is to ensure that sx1≈ sx2. Notice that we do not need 
to assume that these sets are identical, only for there 
to be sufficient overlap (which is what concepts of 
common ground (Clark, 2015) would indicate, as 
will be expanded upon later in the paper). In part, 
this requires X1 and X2 to have overlapping feature sets 
(which might be particularly challenging if one or both 
parties are relying on internal, inferred features rather 
than external features).

The second challenge in explanation is to agree on 
what defines relevance. We propose (as a starting 
point) that relevance could be defined as:

	● ‘Clusters’ identify which features co-occur but 
do not make predictions or draw inferences about 
feature relations.

	● ‘Beliefs’ are based on prior experience that features 
co-occur and can predict consequences of specific 
features alterations.

	● ‘Policies’ identify which features co-occur to allow 
actions.

There is, in this distinction between clusters, beliefs, 
and policy, an implied degree of strength of relevance. 
For example, messages across a network constitute a 
feature; a count of messages over time constitutes a 

cluster; whether the network is busy or not constitutes 
a belief; and responses to manage the network is a 
policy.

From this, we propose that an explanation, E, involves 
the set of features to which a person attends, a means 
of defining the relevance, R, of these features, and a 
(potential) aim of influencing action, A:

Ei = si ∧ Ri→Aj [1]
where R = (C∨B∨P), A = action

From [1], an explanation is generated when two 
parties, X1 and X2, in a situation, S, seek to align the 
features to which each party attends, with X1 seeking 
to alter the notion of relevance applied by X2 knowing 
that this could lead to an action (Figure 1).

In this respect, selection of features from the situation 
involves a process analogous with Klein et al’.s (2007) 
Data-Frame concept of sense-making (where data is a 
set of features and frame is a form of relevance). For 
the hacking example, relevance could be framed in 
terms of a combination of features; the features could 
occur together (cluster); the features could imply a 
particular form of attack that the analysts have seen 
previously (belief); and analysts could have an agreed 
strategy for resolving the type of attack (policy). Notice 
also that a possible consequence of the explanation 
could be for x2 to perform an action, A. The actions 
could be, for example, that X2 acknowledges or accepts 
the explanation, that X2 challenges the explanation or 
seeks further information, or that X2 performs some 
task as a result of the explanation.

An explanation, in this case, ought to indicate how the 
features align to relevance. As in Lombrozo’s (2010) 
hypothesis, different modes of cognition employ 
different modes of abductive reasoning, so that there 
is more than one type of explanation process. Figure 
9 suggests that initial alignment involves checking 
the features attended by x1 and x2. If these are not 
aligned, then the first-pass explanation might involve 
highlighting specific features, so that sx1≈ sx2. Where 
there continues to be uncertainty or misalignment, then 
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further action might be required to produce alignment 
across one or more type of relevance. Misalignment 
of belief could involve challenging the selection of 
features; misalignment of cluster could involve analysis 
using a different set of features; misalignment of policy 
could involve proposing a different strategy.

One of the reviews of this report has interpreted the 
framework (Figure 6) in terms of the realistic accuracy 
model of personality judgment (Funder, 1995). 
Drawing the analogy between making a judgment 
about personality traits, we can assume that an 
explanation assumes that “…although truth indeed 
exists, there is no sure pathway to it. There is only a 
wide variety of alternative pathways, each of which is 
extremely unsure.” (Funder, 1995, p. 656). For Funder 
(1995), the accuracy of a judgment can be formalised 
as follows:

Accuracy =

[(relevance: of behavioural cues to a 
personality trait) x (availability: of cues to 
observers)]

x

[(Detection: of these cues) x (Utilisation: of 
these cues by the judge)]

In this case, the square brackets separate an 
environmental side of the equation (analogous to our 
notion of situation) from the perceiver side (analogous 
to our notion of explainer and explainee). Assuming 
that the explainer and explainee are individual judges, 
agreement on the cues (analogous to our notion of 
features) would be S1 ≈ S2 in our framework, and 
agreement on the utilisation of these cues would be 
R1 ≈ R2. In the following section, we present further 
examples of the framework to illustrate its application 
to the motivating example.

5.1 APPLYING OUR 
EXPLANATION FRAMEWORK 
TO HUMAN-HUMAN 
INTERACTION
Having defined elements of explanation, we can use 
these to produce some simple use-cases to illustrate 
the processes that might occur.

5.1.1 EXAMPLE 1: SX1 ≈ SX2 AND RX1 ≈ RX2

Let us assume that our two individuals, explainer, X1, 
and explainee, X2, have similar knowledge, training, 
experience, etc. In this instance, when both parties 
assume that Sx1 ≈ Sx2 and Rx1 ≈ Rx2, the need for 
explanation is negligible. However, when Sx1 ≠ Sx2, 
the individuals will need to resolve common ground, 
e.g. through agreement on which factors are relevant. 
If X1 ≈ X2, alignment could simply involve indicating 
a change in a relevant feature. We assume that there is 
honest signalling (Maynard Smith and Harper, 2003) 
in that the change in feature has occurred and that this 
change is relevant to the situation. 

For example, the email traffic in the network might be 
unusually low for a Tuesday compared with previous 
weeks. In this case, X1 might draw the attention of 
X2 to this. However, if X2 does not recognise the 
relevance of this change in situation feature, then an 
explanation would involve X1 highlighting the change 
and presenting the associated belief as to its relevance. 
Here, the assumption is that (because X1 ≈ X2 is 
the equilibrium state) it should be possible for X2 to 
interpret the belief with minimal effort, i.e. X1 can 
highlight the relevant features and expect X2 to access 
a belief to determine relevance.

5.1.2 EXAMPLE 2: SX1 ≈ SX2 AND RX1 ≠ 
RX2

For people without similar backgrounds (i.e. X1 ≠ 
X2), alignment could be more effortful. Given the 
potential mutability of beliefs and clusters, it makes 
sense for explanation to focus initially on ensuring 
alignment on the set of features. As an initial move, 
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the focus on features would allow people to check their 
assumption that alignment exists or is possible or allow 
the explainer to provide the basis for the explainee to 
infer an appropriate cluster, belief, or policy.

5.1.3 EXAMPLE 3: SX1 ≈ SX2 AND RX1 ≠ 
RX2 AND RX2 ≈ RX1RX1

Assume that an experienced practitioner is providing a 
training example to a new apprentice. In this instance, 
the aim is not necessarily to create full equilibrium 
(that is, one does not expect the apprentice to know 
everything that the experienced practitioner knows). 
Rather, there is an expectation of a change in the 
knowledge of the apprentice towards a subset of the 
knowledge of the experienced practitioner: ∆Rx2 
rx1⊆Rx1. 

For this to occur, there is a need to establish that Sx1 
= Sx2. In this case, an explanation is (a) ensuring that 
X2 attends to specific features to (b) encourage the 
knowledge of the relevance of these features to a policy, 
i.e. the operations that can be performed over the 
features. This could allow the apprentice to distinguish 
between two specific types of network attack.

5.1.4 EXAMPLE 4: S1 ≠ S2 AND R1 ≠ R2 
AND ∆R2 ≈ R1⊆R1 AND A2 = ∆S2

While Example 3 emphasises explanation as an 
epistemic objective (to increase knowledge of X2), 
this might not be so important in an analyst-user 
interaction. In this case, the emphasis might be on 
ensuring that the user understands the situation (and 
the consequences of their actions on this): Ax2 = ∆sx2. 
In other words, the emphasis is on motivating the user 
to change their password, etc. 

It is arguable that this motivational objective is fully 
dependent on a change in knowledge (does it matter 
if the user does not understand the entire basis of 
the advice if they act as required?) In this case, the 
explanation would place more emphasis on the action, 
A, to perform and the constraints (and consequences) 
of this action. Change in knowledge would be required 

only as far as it supported this change in action, i.e. 
for X2 to have a productive understanding. Indeed, an 
aim would be for X2 to become their own explainer 
or to have the analyst-as-explainer replaced by another 
source, such as a leaflet, website, etc.

5.1.5 EXAMPLE 5: SX1 ≠ SX2 AND RX1 ≠ 
RX2

Assume that the resolution of the incident is 
communicated to the public by a newspaper story. In 
this case, the reader of the newspaper will have a third-
hand account (via IT department to PR department to 
journalist) and only a partial view of the situation. 

Furthermore, one can assume that the newspaper 
reader is unlikely to be an IT specialist, so would also 
have less technical knowledge. In this case, while the 
newspaper story might provide an explanation of the 
hacking (in terms of the broad nature of the event), it 
might lack sufficient detail to enable reconstruction of 
either situation or knowledge. If the newspaper reader 
wished to implement the fix to the problem (to prevent 
their own email account being hacked), then it is 
unlikely that the explanation here would be sufficient.

5.1.6 EXAMPLE 6: SX1 ≠ SX2 AND RX1 ≈ 
RX2

Assume that a formal report (product) is written 
following the incident. This product is consulted by 
other analysts (possibly in other organisations) who 
create their own report. In this case, X1 is the report 
(rather than another person). One can assume some 
equivalence of knowledge (in terms of the training 
and experience of the analysts) but differences in their 
access to the situation. In a sense, this sequence of 
formal reports is analogous to research on transmission 
chains (Bartlett, 1932). As information passes through 
a transmission chain, so it loses redundancy and 
becomes more focused (Kempe et al., 2019). 

This might be the result of the formal structures 
imposed by the style of reports; of the way people 
share information; or of a desire to focus on relevant 
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information. A consequence of this might be that 
fewer and fewer of the situation factors become shared 
– until, somewhere down the line, a reader might 
challenge the report because it does not correspond to 
their interpretation of the situation. At this point, there 
might need to be communication between this reader 
and the report’s originator, with a view to establishing 
the relevant factors of the situation.

When the X2 does not agree with the explanation 
provided and / or does not understand it, it is important 
to consider how the X2 decides that an explanation is 
not sufficient for their goals and understanding. Miller 
(2019) referred to this as ‘explanation evaluation’ and 
concluded that the most important and agreed upon 
criteria are: probability, simplicity, generality, and 
coherence with prior beliefs. 

So, in our hacking example, an X2 is most likely to 
accept an explanation that a) is consistent with their 
beliefs about email hacking (coherence); b) includes 
less causes but explain more of the events (simplicity, 
generality); and c) that a particular type of attack is the 
true cause of the observed features, e.g. the influx of 
unsolicited mail (probability). 

Note that the simple statistical relationship (cluster) 
between a particular type of attack and the quantity of 
unsolicited mail is not sufficient explanation – causes 
are desired to explain events (Halpern and Pearl, 
2005a). As mentioned earlier, while a true / likely 
cause is an attribute of a good explanation, to say that 
the most probable cause is the best explanation would 
be incorrect (Hilton, 1996).

5.2 APPLYING OUR 
EXPLANATION FRAMEWORK 
TO HUMAN-AGENT 
INTERACTION
Having developed a framework for human-human 
explanation and provided some illustrative examples, 
we consider how these explanation types might apply 
to human-agent interactions.

Algorithm Feature Cluster Belief Policy

Logistic Regression Independent 
Variables

Predictors and 
Interactions

Regression model 
for outcome

Decision Trees Nodes Causal relations Cause-effect 
relations as 
regression models

K-nearest 
Neighbour

Labelled data points 
in n-dimensions

Defined by number 
(k) of neighbours

Clusters will be 
mutually exclusive

Support Vector 
Machines

Variables Classes Likelihood of event 
(from classification)

Optimal division 
between classes

Table 3. Aspects of relevance for ML algorithms
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5.2.1 EXAMPLE 1: S1 ≈ S2 AND R1 R2

Recommender systems might inform their users of the 
specific features that inform the recommendation, e.g. 
a word cloud taken from a movie’s reviews (Gedkili 
et al., 2014), or a histogram of ratings of a move by 
similar users (Herlocker et al., 2000).

In our terminology, relevance is presented in the form 
of a cluster. Other recommender systems present a 
comparison of items. ExpertClerk (Shimazu, 2002) 
would offer a recommendation in terms of trade-offs of 
specific features, e.g. “This necktie is more expensive 
but is made of silk. That one is cheaper but is made of 
polyester.” Here, objects are compared on two features 

and the trade-off is presented in terms of what we 
consider is a belief that could be discussed.

5.2.2 EXAMPLE 2: SX1 ≈ SX2 AND RX1 
RX2

In most applications of ML, identifying a cluster does 
not involve indication of a belief. We note that the 
word belief is used in some forms of ML but has quite 
a different meaning to the way we used it. For instance, 
in a Bayesian Belief Network (BBN) situation, features 
are arranged in a network (Figure 9). Connections 
within this network are defined by probabilities and 
altering these probabilities produces different output. 
For BBN, belief is the probabilistic weighting of these 
connections. However, when a belief network becomes 
large, it can be difficult to read or to appreciate the 
relations that are being expressed. Techniques such as 
BayesPiles (Figure 10) can help in visual simplification 
of these networks.

From our perspective, the weighting of connections is, 
at best, a cluster and more likely simply a set of features 
(as far as the human decision-maker is concerned). 
This means that the BBN does not express a belief 
about its outcome, i.e. it does not offer a plausible, 
generalisable frame in which to make sense of the 
connections between features or account for what 
might happen if features are missing. 

In other words, there is no underlying model (outside 
the data) that would allow prediction from the cluster. 

Figure 8. ExpertClerk dialogue with shopper 
(Shimazu, 2002)

Figure 7. Word cloud (Gedkili et al., 2014) and 
MovieLens (Herlocker et al., 2000)
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In this case, while there might be an intention of 
aligning the features that the ML has used with those 
that the human can interpret, such that S1 ≈ S2, it is not 
possible to align notions of relevance. However, users 
might assume belief from the output of ML, e.g. either 
anthropomorphising the process by which an outcome 
has been reached or assuming that counter-factual 

reasoning would be possible by modifying the features 
that the ML uses. For ML to provide something that 
might be interpreted as beliefs, it is possible to apply 
techniques for association rule mining, which seek to 
discover dependencies between features in ways that 
are more amenable to generalisation than clusters 
would allow (Altaf et al., 2017).
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Build fire breaks
Y
N
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Figure 9. Sample output from NETICA

Figure 10. Example visualisation of BayesPiles [Vogogias et al., 2017]
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5.2.3 EXAMPLE 3: SX1 ≈ SX2 AND RX1 
RX2 AND ∆RX2 ≈ RX1⊆RX1

Educational technologies provide personalised and 
adaptive environments to support learning (Dawson et 
al., 2010). In these systems, learners are provided with 
situations in which they review material (features) to 
answer questions (actions) and their performance on 
the questions will impact on their progression through 
the set of material, i.e. learners who make mistakes 
or show misconceptions will be provided with more 
material of similar content and more questions of 
similar difficulty. 

Furthermore, some systems seek to align attention 
to information (relevant features) and knowledge 
(understanding of operations over the information) 
through open learner models that compare to the 
learner’s understanding (based on their answer to 
specific questions) and their confidence in giving these 
answers.

5.2.4 EXAMPLE 4: S1 ≠ S2 AND R1 R2 
AND ∆R2 ≈ R1⊆R1 AND A2 = S2

Technology-mediated ‘nudging’ (Caraban et al., 2019) 
create ‘choice architectures’ that present alternative 
actions to decision-makers in ways that are intended 
to support positive changes in behaviour. These 
technologies encourage or discourage behaviours 
that might have impact on the user’s wellbeing. 
These technologies might remind the user of specific 
consequences of their actions, suggest alternative 
actions, or emphasise social desirability of the 
consequences. In our terms, the focus is on action, 
through highlighting relevant beliefs.

5.2.5 EXAMPLE 5: SX1 ≠ SX2 AND RX1 
RX2

Explainable AI can be defined as a situation in 
which the explainer (the AI) attends to a different set 
of features to those used by the explainee, and the 
definition of relevance used by the two parties does 
not align. In deep (or reinforcement) learning, the AI 
seeks to discover a policy by which it can optimise 

reward (say, success in playing a game) by performing 
actions in specific situations. Post-hoc analysis of the 
AI performance (e.g. in the form of gradient-based 
saliency plots, Figure 19) could allow the person to 
infer the features that the AI might have been using, 
i.e. Sx1 ≈ Sx2. However, it is not so easy to discern how 
the features were defined as relevant or even whether 
the AI actually made use of these features. Combining 
a host of outputs, from the application of different 
algorithms, could allow the analyst to ‘compare and 
contrast’ the relevance of different features in terms of 
policy. (Figure 11).

5.2.6 EXAMPLE 6: SX1 ≠ SX2 AND RX1 
RX2

Argumentation technology (Reed et al., 2017) 
combines a computer model of reasoning towards 
conclusions (arguments) with an interface that allows 
users to explore the structure of these arguments. 
We assume that the features, or relevance, offered 
by parties in an argument might not align. Through 
argumentation, parties identify points of similarity 
and difference, e.g. features to emphasise or notions of 
relevance. User interfaces for argumentation visualise 
the set of features drawn upon by an argument and their 
relations (which we would call beliefs). The user could 
then explore the effect of adding or removing features 
or changing relations, which could be particularly 
useful for counter-factual reasoning (Guidotti et al., 
2019).

Appendix B develops these ideas with an application to 
one of the use-cases developed during the workshops.

5.3 HOW MIGHT THE 
FRAMEWORK ACCOUNT FOR 
BREAKDOWN AND REPAIR IN 
EXPLANATIONS?
From our explanation framework, we can also consider 
how breakdown might arise and what might be required 
to enable repair.
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For human-human interaction, one can imagine ways 
in which the explainer and explainee will engage in 
conversation to check their selection of features or 
definition of relevance, and to ensure that the definition 
is shared and understood sufficiently to enable an 
action to be performed. 

When the explainer is an algorithm, the process of 
aligning features or defining relevance can be more 
difficult. Advances in visual analytics (which allow 
humans to explore data sets and clusters) could offer 
opportunities to ensure alignment of features if the 
algorithm is capable of recalculation when the human 
adds or removes features. 

For some algorithms, the latter might be difficult 
(because removing features unbalances the data 
or redistributes the correlations between features). 
It might be useful to produce multiple runs of the 
algorithm, using a leave-one-out approach to the sets 
of features, to enable the exploration of sensitivity of 
the algorithm to different combinations of features. 
But such exploratory data analysis (or ‘fishing’) is 
not always good practice and can reinforce biases or 
misconceptions held by analysts, particularly if their 
knowledge and experience of the domain is limited. 

It might be preferable to aim for explanation type 3, 
in which the human analysts, through education and 

Figure 11. Multiple views of deep learning outputs for retinal diseases diagnosis [De Fauw et al., 2018]
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feedback from the algorithm, are able to understand 
the definition of relevance that the machine is 
applying. This looks very much like the approaches to 
intelligibility and transparency of algorithms discussed 
in Section 3. 

However, without understanding the features (i.e. 
without a sufficient situation awareness) simply 
understanding the algorithm is insufficient to 
appreciate the implications of its recommendation and 
output. In this respect, explanation type 4 (i.e. knowing 
how complying with the recommendation will affect 
the situation) becomes essential. This corresponds to 
level 3 situation awareness (Section A.5).

Since we have conceptualised explanation as an 
interactive process, it is important to consider how 
to challenge an explanation that explainees do 

not understand or do not agree with. To dispute 
an explanation given, an explainee should use the 
following methods:

	● Deduction – reasoning from more premises to 
reach a logically certain conclusion.

	● Induction – making broad generalisations from 
specific observations / knowledge.

	● Abduction – inference from evidence to the best 
explanation for a given conclusion

	● Argument by analogy – perceived similarities to 
infer further similarity that has yet to be observed

	● Reductio ad absurdum – either disprove a statement 
by showing the result would be absurd, or to prove 
one by showing that if it were not true, the result 
would be impossible.

Explanation Type Breakdown Repair

1 S1 ≈ S2 and R1 ≈ R2 This assume that both parties agree 
features to extract from the situation 
and the appropriate definition of their 
relevance. Breakdown in either of these 
results in types 2, 5 or 6

Either seek agreement of 
feature set or alignment on 
definition of relevance

2 Sx1 ≈ Sx2 and Rx1  Rx2 The feature sets are aligned but there is 
not agreement on their relevance

Seek alignment on definition 
of relevance

3 Sx1 ≈ Sx2 and Rx1 ≠ Rx2 and ∆Rx2 ≈ 
rx1⊆Rx1

The feature sets are aligned and the aim 
is to shift the definition of relevance 
held by x2, e.g. through teaching

Guide x2 to acquire 
understanding of relevance. 
Check that x2 can apply the 
new R.

4 S1 ≠ S2 and R1 ≠ R2 and ∆R2 ≈ r1⊆R1 
and A2 = s2

As 3, but with the added aim of 
encouraging action by x2.

As 3, plus encourage action. 
Check that x2 understands 
the goal of the action. Check 
that x2 performs the action 
acceptably.

5 Sx1 ≠ Sx2 and Rx1 ≠ Rx2 See 1 See 1

6 Sx1 ≠ Sx2 and Rx1 ≈ Rx2 See 1 See 1

Table 4. Mapping breakdown and repair to explanation types
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These discussion methods can be used in many 
ways to suit the situational factors that constrain the 
explanation. For instance, the explainee could use 
a simple question to challenge the logic used in the 
original explanation. 

It is important to not stray far from these types of 
arguments because other types of debating techniques 
can stem from illogical reasoning or from judging the 
explainer’s reasoning based on facts that are unrelated 
to the explanation given. 

For example, an ad hominem argument is one that 
is directed against a person rather than the position 
they are maintaining. Challenging explanations in 
this way can lead to unproductive discussion, a loss 
of trust between parties, and decisions that result in 
unsatisfactory action further down the line.

Example 1:

Person 1:  
I think we should use approach X to tackle the email 
hacking issue because it has been an effective method 
in other similar hacking cases, like with company Y.

Person 2:  
(thinks person 1 is too young and inexperienced to 
know this for sure so seeks out another opinion from 
someone they think will disagree with person 1. This 
results in confirmation bias).

Furthermore, by challenging an explanation 
productively, it gives the explainer the opportunity 
to see the fault in their original reasoning so that the 
same mistake will not be made in the future.

Example 2:

Person 1:  
I think we should use approach X to tackle the email 
hacking issue because it has been an effective method 
in other similar hacking cases, like with company Y.

Person 2:  
Yes, but company Y used a different firewall to the 

company we’re looking at now. Do you think approach 
X can still solve this?

Person 1:  
I hadn’t thought of that, I’ll remember to check that in 
the future.
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6. GUIDELINES FOR EXPLANATIONS
In an overview of the impact of ML and related 
algorithms on human decision-making, Spiegelhalter 
(2020) offers some rules of thumb that could be asked 
of any algorithm (or, indeed, any decision-support 
automation):

	● Is it any good when tried in new parts of the real 
world?

	● Would something simpler, and more transparent 
and robust, be just as good?

	● Could I explain how it works (in general) to anyone 
who is interested?

	● Could I explain to an individual how it reached its 
conclusion in their particular case?

	● Does it know when it is on shaky ground, and can 
it acknowledge uncertainty?

	● Do people use it appropriately, with the right level 
of scepticism?

	● Does it actually help in practice?

Aim of ML 
algorithm

What can you ask the data used by the algorithms? What can you ask about the 
performance of the algorithms?

Classification Sources of data 

Number of samples

How were the data cleaned and otherwise prepared?

Correct versus false classifications 
{sensitivity; specificity; Precision; F1} 

Confusion matrix

Clustering Sources of data 

Number of samples

How were the data cleaned and otherwise prepared?

Were the data labelled (by hand) or were clusters 
discovered automatically?

Number of categories reported

Separation of clusters

Tightness of clustering

Regression Sources of data 

Number of features

How were the data cleaned and otherwise prepared?

Correlation

Fitting error 

Dimensionality 
Reduction

Sources of data 

Number of samples

How were the data cleaned and otherwise prepared?

Number of dimensions reported

Under / Over-fitting

Feature selection

Filtering

Feature extraction

Table 5. Types of ML algorithm and topics
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These rules of thumb are not concerned with the 
workings of the algorithm so much as the context in 
which the algorithm is applied. They require that 
anyone deploying the algorithm should be able to 
appreciate how it contributes to the real world. In 
particular, the analyst should be able to understand the 
output of the algorithm sufficiently to explain how it 
arrived at this output and to interpret the output with 
sufficient scepticism to be able to respond to questions 
or challenges to its output. In answering any of these 
questions, there is a need to provide an explanation of 
the algorithm’s performance, its output, and the impact 
of this output.

In its guide to ‘Explaining decisions with AI: Part 1’, 
the Turing Institute offers four guiding principles:

	● Be transparent

	● Be accountable

	● Consider context

	● Reflect on impacts (fairness, safety, and 
performance)

For this report, the questions point to two essential 
features of an explanation. The first is that 
explanations are situation specific, and the second is 
that explanations are tailored to the knowledge and 
experience of the explainee. From this, we propose 
that the guiding principles listed above can be 
applied to explainer and explainee as human actors 
in an organisation, and to the design, development, 
deployment, and use of AI / ML (in that AI / ML could 
be expected to be given the role of explainer).

A broad classification of AI / ML is given in Table 5 
(Appendix B provides an overview of how AI / ML 
methods relate to concepts of explanation). Without 
going into detail on how the ‘aims of the machine 
learning algorithm’ are defined, it is sufficient to 
recognise that these define broad types of algorithm. 
In some instances, the aim is to identify patterns 
(clusters) or associations (regression) in data sets. 
These clusters could then be used for classification 

(i.e. to identify a new piece of data in terms of known 
classes or clusters). Alternatively, the aim might be 
to reduce a very large data set to a small number of 
dimensions (usually, each dimension is defined by a 
cluster of features). 

In the second and third columns, we suggest topics 
that a non-specialist might ask about the data that the 
algorithms use and about how these algorithms can be 
evaluated. These topics could be used for a first-pass 
discussion of what the algorithm will be used for, what 
data it might use, and how its performance could be 
judged.

Taking the notion of topics in Table 5 a little further, 
we can propose a checklist that the non-specialist 
might use to ask questions about the potential use 
of AI / ML in their activity. This is shown in Figure 
12 and is intended as an aide memoire rather than a 
formal procedure.

From our review of the literature across different 
disciplines, we define common themes that contribute 
to the concept of explanation. In some places, this has 
meant merging terms for convenience. For instance, 
plausibility and likelihood were deemed synonymous 
in their respective contexts. Furthermore, some criteria 
were grouped under an overarching category if they 
related to a broader aspect of explanation. For example, 
plausibility and probability were aspects of explanation 
that referred to causes. In order of importance, the 
criteria are:

1.	 Explanations should include relevant causes 
Explanations should relate to beliefs in the 
relationship between features of a situation and 
the causes that can directly affect the event being 
explained (probability) or can explain most of the 
event (explanatory power); are plausible (construct 
validity); and if the cause was instigated by a 
person, deliberative.

2.	 Explanations should include relevant features 
Explanations should relate to the key features of 
the situation and the goals of the explainer and 
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explainee.

3.	 Explanations should be framed to suit the 
audience 
Explainers should fit the explanation to suit the 
explainee’s understanding of the topic and what 
it is they wish to gain from the explanation (their 
mental model and goals).

4.	 Explanations should be interactive 
Explainers should involve explainees in the 
explanation.

5.	 Explanations should be (where necessary) 
actionable 
Explainees should be given information that can 
be used to perform and / or improve future actions 
and behaviours.

From the explanation framework that we offer, we 
propose guidelines relating to the dialogue between 
explainer and explainee:

	● Seek alignment in features used in the explanation.

	● The explainer should provide a clear and concise 
account of the features that are used in the 
explanation.

	● The explainee might sketch the features expected 
before seeking the explanation. For example, 
Belgian police officers speak of ‘think steps’ for 
specific categories of crime – these represent 
the high-level activity that they would expect to 
perform in investigating a specific crime, with the 
associated classes of information that the activity 

Figure 12. Flowchart for questions to ask of the AI / ML algorithm
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involves (Hepenstal et al., 2019). In this way, the 
explainee could compare expected with observed 
features.

	● The explainer and explainee should seek alignment 
on the features that are used. If there is discrepancy, 
this could either indicate differences in access to 
data or differences in interpretation of the features.

	● Clarify the definition of relevance used in the 
explanation.

	● We distinguished between different types of 
relevance – feature, cluster, belief, policy – that, 
while primarily derived from computing, can 
be related to the other domains that we have 
considered. Broadly, these information types imply 
a level of processing from the specific features that 
are recognised in a situation to the groupings of 
features into clusters, to the covering law or rules by 
which the clusters are formed and the implications 
of these rules for action (which we term belief), 
to the overarching regulation (we call policy) that 
governs acceptable actions in that context:

1.	 Defining features – as noted above, the choice 
of features used in an explanation will depend 
on their availability and their weighting to the 
analysis.

2.	 Defining clusters – for algorithms that seek to 
discover clusters in data, the visual display of 
the output might be sufficient for the explainee 
to make sense of the features and the clusters. 
However, it is important for the explainee to 
appreciate that the clusters are entirely empirical; 
changing the set of features (or the coefficients 
which define the clusters) can produce different 
results. The algorithm has no underlying belief 
or expectation as to why such features arise but, 
likely, the explainee might impose beliefs.

3.	 Defining beliefs – for algorithms that apply 
rules to the analysis of the data (e.g. in terms of 
maximising a reward function), the explainee 
should be able to not only understand how the 
beliefs apply to the data but also to challenge 

these beliefs, e.g. in the form of foils (counter-
factual examples or additional features). Equally, 
algorithms could present foils to explainees as a 
means of challenging assumptions and bias in the 
humans.

4.	 Defining policy – in this report, policy relates 
to the actions which arise from an algorithm’s 
recommendation. In this respect, understanding 
the second- and third-order consequences of 
accepting and acting upon an algorithm’s output 
(or declining to follow this) plays an important 
role in explanation. It could also allow the 
algorithm to be modified or retrained to minimise 
the risk to unacceptable policy implications.
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APPENDIX A: NOTIONS OF 
EXPLANATION FROM THE HUMANITIES 
AND HUMAN SCIENCES
If we are concerned with the role of explanation in 
human engagement with AI / ML, we ought to begin 
our analysis with a review of disciplines that focus 
on this. Different disciplines take different stances 
in their approach to how explanation occurs, and the 
specific processes involved. To create a framework 
of explanation, we have conducted a thematic review 
of literature from philosophy, linguistics, social 
psychology, and education. By considering the 
different questions each of the disciplines ask, we can 
create a framework of explanation that is applicable 
to many different contexts. This builds on the work 
on Miller (2019) who, from a review of social science 
literature, concluded that:

1.	 people prefer contrastive explanations, i.e. a 
focus on choice of action rather than account of 
algorithm

2.	 people focus on a small set of features to create 
causal models rather than produce complete 
accounts with all possible causes

3.	 people focus on events as linear causes of 
outcomes rather than in terms of probabilities

4.	 people present explanations as part of 
conversations, with an expectation that they 
will be required to provide more information if 
required, rather than as unquestionable statements 
of fact.

A.1 PHILOSOPHY
In philosophy, to speak of explanation is to understand 
the nature of causality. From this, an explanation is an 
account in which an outcome is described in terms of 
its antecedent cause(s). From this perspective, there 
are many theories to define explanation, ranging from 

natural or covering laws (Hempel & Oppenheim, 
1948), to statistical dependence theory (Salmon, 1971), 
to regularity theory (Hume, 2000), to transference 
theories (Dowe, 1992; Fair, 1979; Aronson, 1971). 
For these models, causality requires unequivocal root 
causes (Miller, 2019; Lombrozo, 2007; Halpern & 
Pearl, 2005b; McClure, 2002; Hilton, 1996). 

There is, therefore, a need to fully constrain the causes 
before an explanation can be accepted. For example, in 
Hempel’s covering law an explananda (i.e. an event or 
phenomenon to be explained) is reflected by explanans 
(i.e. laws that pertain to the event or phenomena and 
situations that apply to the specific instance of the 
explananda). Bird (1999) offers several examples of 
this idea. For example, the explananda was the fact 
that Mr. Smith died. The circumstances were that ‘Mr. 
Smith ate a pound of arsenic’ and the covering law is 
that ‘Everyone who eats a pound of arsenic dies within 
24 hours.’ Given that the covering law applies to the 
circumstances, we can offer an explanation of Mr. 
Smith’s death. 

This seems to be an elegant approach, but it requires 
full knowledge of the circumstances and agreement on 
the relevance of the explananda (covering law). So, if, 
in a separate tragic case, Mr. Jones had eaten a pound 
of arsenic but had then been hit by a bus, we cannot 
unequivocally apply the covering law concerning 
arsenic (because there is uncertainty on whether the 
arsenic covering law or a different law concerning 
impact of road vehicles applies). 

This suggests that there will be situations in which 
it would not be possible to define an unequivocal 
covering law. From this, and related reasons, Livengood 
and Sytsma (2020) argue that such definitions of 
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causality will not satisfy the causal attributions made 
in everyday explanations. So, an answer to the question 
‘Why is the sky blue?’ would need to include a cause, 
or set of causes, that would describe the outcome, e.g. 
the sky is blue because sunlight is refracted by dust 
particles in the atmosphere. 

However, while this might highlight some of the 
features that could be relevant to an explanation, it 
might not exhaustively detail the relationship between 
these features. Such a relationship needs to be inferred 
by the person receiving the explanation (the explainee) 
which means that the information that is being offered 
is not so much an explanation as the foundation on 
which to reason towards an explanation (assuming the 
explainee has sufficient understanding of the features 
and their relations in the first place). 

From this perspective, the explanation is not, in effect, 
an answer to the question ‘Why is the sky blue?’ so 
much as a set of features that could lead one to an 
appreciation of an answer (providing that the explainee 
was able to understand the association between these 
concepts).

Lewis (1974) proposes that theories of explanation 
from philosophy agree, at least implicitly, that 
counterfactuals are an important factor of causality. 
Halpern and Pearl (2005a) extend this notion by 
suggesting contingent dependency. In other words, 
while effects may not always depend on their causes 
in all situations, they do depend on them under certain 
contingencies. 

In our ‘blue sky’ example, the contingencies would 
include that the outcome is expected to occur in 
daytime (and not night-time), that it is expected to 
occur after the sun has risen and before the sun is 
setting, that the visibility of the sky is unimpeded by 
clouds, smoke etc., and that the refracted light splits 
into a range of wavelengths that differ in their intensity 
(and ability to pass through media) which produce 
colours visible to the human eye, etc. This improves 
the explanation because the counterfactuals allow the 

situation, in which the explanation is being provided, 
to be made specific. At one extreme, the issue becomes 
a matter of the precision with which covering laws 
and features of the situation are applied to produce 
unambiguous explanations. 

For the purposes of this report, we take the idea that an 
explanation calls upon a set of features which define 
the situation, and that the relevance of these features 
(to an explanation) will be defined by a covering law 
(or, rather, some agreed principle that can be used 
to justify the choice of features as relevant). The use 
of contingencies and counterfactuals implies that the 
situation in which the explanation can apply will be 
constrained, possibly through a process by which 
explainer and explainee reach a consensus on the 
relevance of features. This accords with point 2 from 
Miller’s (2019) list (above), but, we feel, provides more 
detail on the process by which this occurs.

A.2 LINGUISTICS
From linguistics, we take the stance that explanation 
is interactive and occurs in a conversational context. 
Most of the evidence for this comes from analysis of 
real-life conversations by Clark (1996). For Clark and 
his colleagues, conversations progress through the 
definition and maintenance of common ground which 
relates to mutual knowledge, beliefs, and assumptions 
shared by speaker and listener. 

A point of contention in this definition arises from the 
interpretation of the word mutual; often this is taken 
to mean identical, but this is not at all what Clark 
meant. For Clark, mutual information primarily relates 
to having sufficient overlap (in speaker and listener’s 
knowledge, beliefs, and assumptions) to allow a 
conversation to progress. 

When it becomes clear that this overlap is no longer 
sufficient (e.g. through the use of back-channelling 
by the addressee to indicate disagreement or lack of 
understanding), then the conversation needs to re-
establish common ground (e.g. through the speaker 



42

Appendix A: Notions of explanation from the humanities and human sciences
Understanding The Problem Of Explanation When Using Artificial Intelligence In Intelligence Analysis

either introducing additional information or clarifying 
current information). Implicit in this notion of 
common ground is the idea that speaker and addressee 
will apply just enough cognitive effort to maintain the 
flow of the conversation. 

This is similar to Grice’s (1975) cooperative principle, 
which describes how people achieve effective 
conversational communication in common social 
situations. For Grice (1975), conversations appear to 
progress in terms of four maxims, namely: Quality 
(truthfulness), Quantity (informativeness), Relation 
(relevance) and Manner (clarity). Speakers are 
expected to observe and adhere to these principles 
(Davies, 2007; Wilson & Sperber, 2002; Grice, 1975) 
to make a contribution to the conversation that is 
accepted as relevant.

Sperber and Wilson (2002) argue for a cognitive 
principle of relevance which states that human cognition 
is evolutionarily geared towards the maximisation of 
relevance. According to Wilson and Sperber (2002), 
an input is relevant only when its processing yields 
positive cognitive effects; so, when an input connects 
to background information available to individuals, 
they can produce conclusions that are relevant to them. 
Furthermore, an input is worth picking out only when 
it is more relevant than any other input available to the 
individual at the time (the greater the positive cognitive 
effects, the greater the relevance). Relevance also 
depends on the effort required to process the input – 
the more effortful the processing of an input, the lesser 
its relevance. The challenge, from this perspective, 
lies in defining the processes by which relevance is 
determined (beyond the suggestion that individuals can 
attend to information in terms of cognitive effort). This 
accords with point 4 from Miller’s (2019) list.

Critics note that Sperber and Wilson’s (2002) 
definition of relevance is too vague to be applicable in 
natural setting and, thus, leaves the concept too open to 
interpretation to be useful. One solution to this might 
be to draw a parallel with Hempel’s covering law . 
From this, relevance could be considered in terms of 

a) the circumstances in which an explanation is being 
presented (i.e. those features of the circumstance to 
which explainee is attending), and b) the law by which 
these features are deemed to be relevant. 

While this produces a clumsy, circular argument (to 
the effect that features are relevant because they are 
relevant because of the law that relates them to the 
circumstances) and does not offer much to help with 
understanding the cognitive processes, it does offer 
support for the role of bidirectional conversation 
between explainer and explainee. To illustrate this, the 
explainee asks ‘Why is the sky blue?’ and the explainer 
speaks of refraction and dust particles. If the explainee 
does not know the meaning of the word refraction then 
this creates a cognitive demand (perhaps to use their 
knowledge of physics of light to guess what it means) 
or an indication to the explainer that there is a problem 
(meaning that the explanation in its current form does 
not satisfy Grice’s cooperative principles) and, thus, 
requires more information. 

From this we assume that an explanation will involve 
clarification of features (reinforcing the notion of 
contingency dependence from philosophy) and 
consensus on these and the definition of relevance. If 
consensus as to whether information is relevant arises 
from the conversation between explainer and explainee, 
then this might involve more than ‘laws’ because there 
might be agreement as to what constitutes relevance 
(and this agreement might involve imprecise or 
informal definition of the relationship between features 
and circumstance). 

Therefore, we propose (as a starting point) that 
relevance could begin with seeking agreement on 
specific features that the explainer and explainee agree 
would be appropriate, and, if there are several features, 
then they might be grouped, which we will call cluster, 
or by an expectation (based on prior experience) that 
the features occur together, which we will call belief, or 
by a covering law by which features must occur together 
(which we will call policy) and which can allow action. 
From this perspective, a cluster exists purely in terms 
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of the co-occurrence of features and has no capability 
of making predictions or drawing inferences about the 
features. Most of the simpler ML algorithms rely of 
structuring features in terms of regression, correlation, 
or similarity. A belief, on the other hand, considers the 
co-occurrence of features in terms of prior experience 
and can be used to make predictions about what might 
happen if specific features were altered. Therefore, 
clusters should be considered separate to beliefs.

A.3 SOCIAL PSYCHOLOGY
Social psychology assumes that, like linguistics 
(Section A.2), explanation occurs in a social context 
(Miller, 2019; Malle, 2006; Hilton, 1990). People are 
more likely to offer one or two features as first-pass 
explanation (McClure et al., 2001; McClure & Hilton, 
1997; Leddo, Abelson, & Gross, 1984; Tversky & 
Kahneman, 1983). These features imply a) a string of 
causal reasoning that the other people are assumed to 
be able to perform and b) are sufficient to explain the 
situation. The former relates to the notion of common 
ground and the latter relates to the notion of relevance. 
Thus, both the explainer and explainee are actively 
involved in the explanation process.

Further support for the idea of a string of causal 
reasoning can be found in Sobel’s (2020) research on 
deception. In this work, Sobel notes that to lie only 
requires the existence of accepted message meanings, 
to deceive requires a model of how the audience will 
respond to the message, and to cause damage requires 
an appreciation of the consequences that will ensue 
in comparison to providing better information. This 
emphasises the focus on outcome or action as per point 
1 of Miller’s (2019) list.

Research into how people draw causal connections 
echoes the discussion of causality. The key difference 
here being that social psychologists are interested in 
how humans make causal connections as opposed to 
philosophy’s concern with the fundamental nature 
of causality. In social psychology, the focus of the 
explanation is the behaviour of other people, e.g. 

why did person X do act Y? Malle’s (2006) theory 
of social explanation argues that humans make social 
attributions: people attribute behaviour of others and 
themselves by assigning specific emotional or mental 
states to the person performing that behaviour, e.g. 
individual X shouts at individual Y. The behaviour 
(shouting) could, perhaps, occur because individual X 
is angry or individual Y is in danger. 

To select a state to attribute to individual X, we might 
need to know the circumstances in which the behaviour 
occurs, and we might also draw on prior knowledge of 
behaviour performed in similar circumstances or of 
behaviours performed by individual X. Malle (2006) 
argues that if the explainer believes person X’s action 
was intentional, they will ascribe motivations to the 
individual. For example, individual X shouted to warn 
individual Y of an oncoming bus. If the behaviour was 
believed to be unintentional, the explainer will offer 
just causes, such as physical, mechanistic, or habitual 
causes. 

For example, individual X shouted as the result of 
being hungry and annoyed that the computer was not 
formatting a document properly and being interrupted 
by individual Y. This suggests that the relevance 
(borrowing from the discussion of linguistics in Section 
A.2) can vary according to the situation.

Keil (2006) notes that qualitatively different patterns of 
explanation can be used in talking about domains such 
as physical mechanics, biological function, or social 
interactions. Therefore, it is important to recognise 
that the way causal connections are drawn may alter 
depending on the situation (and knowledge of the 
explainer and explainee). 

Causal model theory (Rehder, 2003) suggests causal 
connection is the explicit representation of the 
probabilistic causal mechanisms that link category 
features and objects by evaluating whether they were 
likely to have been generated by those mechanisms. 
The underlying assumption of causal model theory 
is that individuals use abductive reasoning to infer 
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explanations. Chin-Parker and Cantelon (2017) show 
that counterfactual reasoning could also be involved in 
causal connections involving categorisation and their 
research suggests that counterfactual reasoning could 
be key when drawing initial causal connections.

Depending on the situation there will be constraints 
by which information for the explanation is selected. 
Such constraints can be categorised as either implicit 
(e.g. cognitive effort in constructing an explanation, 
explainer goals, and use of contrastive examples) or 
explicit (e.g. access to information). Therefore, it is 
likely that the selection criteria used in each individual 
case of explanation is dependent on the situation, the 
goals of both the explainer and explainee, the context 
of the problem, and various other subjective precursors. 
In this respect, relevance will be influenced not only 
by the most appropriate causal model to apply to the 
circumstances but also by the most appropriate model 
for the abilities of the explainee. 

This relates to the discussion of linguistics and adds 
a further factor concerning the perceived knowledge 
and ability of the explainee. If the explainer assumes 
too little knowledge, then the explanation could 
appear patronising; if the explainer assumes too much 
knowledge, then the explanation could be opaque. We 
consider how explainers adapt their explanation to 
explainee knowledge in our discussion of education 
(Section A.4).

Hoffman and Klein (2017) suggested that explanations 
can come in different forms (sentence, list, narrative, 
diagram etc.) and in varying levels of depth (local 
vs. global). How an explanation is conveyed is then 
dependent on the situation, the explainee, and the 
question asked accordingly. However, we believe this 
should be taken a step further and, therefore, suggest 
incorporating this idea with relevance. So, in terms 
of explanation, the explainer will choose the features 
deemed most relevant to an event, how to present the 
information and the level of explanation based on the 
ability to connect with the context of the explanation 

availability and how effortful they would be to produce 
for explanation.

Explanation evaluation is typically assumed to occur 
from the perspective of the explainee, although, 
given the bidirectional conversation that surrounds 
explanation, one might assume evaluation will also be 
performed by the explainer. So, while one could argue 
that some of the criteria in explanation selection are 
valid for explanation evaluation, differing goals of the 
explainer and explainee could impact the criteria used 
to evaluate the explanation. 

Therefore, it is important to acknowledge that there 
are some differing processes occurring within the 
explainer and explainee during an explanation. For 
example, Hilton (1996) and Jaspars and Hilton (1988) 
argue that a good explanation must be relevant to the 
question asked and the mental model of the explainee, 
while Vasilyeva, Wilkenfold, and Lombrozo (2015) say 
that the goals of the explainee also affect the criteria 
for evaluation. Miller (2019) concludes that the most 
agreed upon and important criteria for explanation 
evaluation are probability, simplicity, generalisability, 
and coherence with prior beliefs. Note, however, that 
probability is only important to an extent. 

For clarity on this, take the comparison Miller (2019) 
makes: a student coming to their teacher to ask why 
they received 50% on an exam. An explanation that 
most students scored around 50% is not going to satisfy 
the student. Adding a cause for why most students only 
scored 50% would be an improvement. Explaining to 
the student why they specifically received 50% is even 
better, as it explains the cause of the instance itself. 
So, the question is whether to explain events using 
generalisations, or to use specific instances.

It is also worth noting that while a true / likely cause 
is an attribute of a good explanation, to say that the 
most probable cause is the best explanation would be 
incorrect (Hilton, 1996). Social psychology, unlike 
philosophy, seems to not only acknowledge that people 
will draw causal connections that do not necessarily 
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reflect true causation, but that there are different 
strategies for doing so. Therefore, a good framework 
for explanation should allow for flexibility in causal 
connectivity as well as accounting for the fact that 
humans can imply causation incorrectly. Similarly, 
in explanation selection, a good framework should 
be flexible enough to accommodate the changes in 
the selection criteria dependent on the precursor 
information. 

Another important finding from social psychology is 
that the explainee does not use the same criteria to 
judge an explanation as the explainer uses to select 
their explanation. Therefore, this further supports the 
idea that the explainee should be considered as an 
active part of the explanation process.

A.4 EDUCATION
As one may presume, the main question about 
explanation asked in the education literature by 
researchers is ‘What is the most effective way of 
explaining?’ While philosophers argue over which 
theory of causality is correct, researchers in education 
have found that most of the major theories of causality 

are useful for aiding student understanding in different 
ways (Table 6).

Education researchers distinguish between practices 
focused on helping students’ understanding of 
explanations from authoritative sources (such as texts 
and teachers), and dialogic practises focused on having 
students create scientific explanations based on their 
own ideas and understanding of evidence (Windschitl, 
Thompson, & Braaten, 2008a; Windschitl, Thompson, 
& Braaten, 2008b). This highlights distinctions 
between the purpose of the explanation and the 
differing roles of stakeholders in the explanation 
process.

The complexity of information is also important 
for fostering understanding in students. Vygotsky’s 
(1980) work suggests that students learn best when 
the knowledge presented to them is within their zone 
of proximal development (ZPD). Essentially, the ZPD 
is knowledge the student can acquire and understand 
with help from a more knowledgeable other. Using 
scaffolding techniques, such as engaging the student 
by questioning them and by providing analogical 
reasoning examples of a process, can aid students 
with the acquisition of knowledge (Kelemen, 2019; 

Table 6. The advantages and disadvantages of using different theories of causality for explanation. Adapted from 
Braaten and Windschitl (2011).
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Arias, Davis, Marino, Kademian, and Palincsar, 
2016). Scaffolding techniques and Vygotsky’s theory 
are widely used in education today and the ideas 
have received a lot of empirical support (Windschitl, 
Thompson, & Braaten, 2008a; Windschitl, Thompson, 
& Braaten, 2008b).

The process of scaffolding, in terms of defining the 
knowledge held by the explainee so the explainer 
can provide information that can be assimilated and 
accommodated, is reminiscent of Clark’s notion 
of common ground. Evidence from the education 
literature suggests that a good framework of 
explanation should account for how the goal of the 
explainer can account for changes in the explanation 
structure. 

Furthermore, education promotes the idea that a good 
explanation should consider the knowledge of the 
explainee. If the goal of the explainer is to expand 
the knowledge and understanding of the explainee, 
techniques to aid this should be accounted for in a 
good framework of explanation.

A.5 HUMAN FACTORS
In human factors, researchers have drawn an analogy 
between understanding the workings of ML and 
situation awareness (Endsley, 1995). In broad terms, 
situation awareness means gathering information from 
a specific situation (e.g. an aeroplane cockpit) and 
using this information to define the immediate events 
(e.g. the state of the aircraft) through appreciation of 
how the situation has arisen and prediction of how this 
situation might change in future. This, in Endsley’s 
theory (1995), is defined in terms of levels:

1.	 Perception of current situation

2.	 Comprehension of how the current situation 
evolved to this state

3.	 Projection of changes

Thus, Chen et al. (2014) define situation awareness 
transparency as “…the quality of an interface to 

support a human operator’s comprehension of an 
intelligent agent’s intent, performance, future plans 
and reasoning process.” [p. 2]. Similarly, Sanneman 
and Shah (2020) and Roundtree et al. (2019) define 
transparency in terms of levels of situation awareness:

	● Level 1 – In this level, situation awareness (of the 
human operator) focuses on the current state of the 
AI system. In part, this involves addressing ‘what’ 
questions, e.g. defining what the AI system did or 
is doing in terms of the data that it is using or the 
results that it has produced. This is what Roundtree 
et al. (2019) terms ‘seeing through the system’ 
and involves “…sensitivities to inputs, semantic 
feature information or model representations, 
cluster information, or abstracted representations 
of model details.” [Miller et al., 2017, p. 99]

	● Level 2 – In this level, the human operator seeks 
to comprehend the rationale for the AI systems 
results. This addresses ‘why’ questions and involves 
what Roundtree et al. (2019) termed ‘seeing into 
the system’. This could involve, for example, an 
appreciation of the underlying algorithms and their 
settings through the exploration of interim results, 
as well as an appreciation of the context in which 
the algorithms have been applied (e.g. in terms of 
the timeliness and coverage of the data, and the 
limits and constraints of the algorithms, etc.)

	● Level 3 – In this level, the focus is ‘what if’ and 
‘how’ questions. This addresses predictions of what 
the AI system might do next or how the AI system 
might respond to changes in data or situation, and 
how it might respond if the human operators do, 
or do not, follow the recommendation. This could 
involve contrastive or counterfactual cases to 
explore ‘what if’ scenarios for the AI system.

In addition to a focus on explanation and situation 
awareness, other human factors approaches draw on the 
consideration of human interaction with automation 
(Section 3) and consider stages of explanation 
(Anjomshoae et al., 2019; Neerincx et al., 2018), types 
of errors (Sheh and Monteath, 2017), agent cognitive 
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states (Harbers et al., 2012), and the theory of mind 
(Hellström and Bensch, 2018).

A.6 THE DATA / FRAME MODEL 
OF SENSE-MAKING
Central to sense-making in the data / frame model 
(illustrated in Figure 13) is the relationship between the 
data to which the analyst has access and the different 
frames that can be used to interpret, make sense of, or 
explain these data (Klein et al., 2006a).

A key stage in sense-making involves deriving a 
sufficient understanding of the situation to be able to 
match it to an appropriate schema. In the data / frame 
model, a frame is applied to a set of the data, or a set 
of the data could suggest a frame. This reciprocity 
points to the continuous interweaving of exploring 
data and generating interpretations. Kang and Stasko 
(2011) note that “…analysis is about determining 
how to answer a question, what to research, what to 
collect, and what criteria to use.” [p. 25]. The point 

at issue is not how people answer questions but how 
they define them in the first place (Roth et al., 2010). 
The Intelligence (or Analysis) Cycle (NATO, 2008) 
involves four phases:

1.	 Direction – definition of objectives for gathering 
intelligence through intelligence requirements and 
requests for information.

2.	 Collection – gathering and receipt of information 
by agents in response to the intelligence 
requirements or through more spontaneous and 
serendipitous routes.

3.	 Processing – compiling and interpreting 
information to produce intelligence.

4.	 Dissemination – distribution of appropriate parts 
of the intelligence to relevant parties.

While this intelligence cycle might begin with direction, 
this only gives a high-level sense of what the analyst 
might be looking for. As collection and processing 
progress, new opportunities arise through discovery-
led refinement (Attfield and Blandford, 2010). Heuer 

Figure 13. Data / frame model of sense-making
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(1999) distinguishes between data driven analysis (i.e. 
applying well-understood analytic procedures to well-
defined data sets) and conceptually driven analysis (i.e. 
dealing with complex, ambiguous, and uncertain data). 

Conceptually driven analysis implies a cycle of activity 
that involves “the reciprocal interaction of information 
seeking, meaning ascription and action” [Thomas, 
Clark and Gioia, 1993, p. 240]. Elm et al. (2005) define 
this activity in terms of down-collect (sample from the 
available data for material deemed to be on analysis), 
conflict and corroboration (ensure accurate and robust 
interpretation of findings and modify the down-collect 
accordingly), and hypothesis exploration (construct 
coherent narrative to explain the findings and reflect 
this narrative back to the conflict and corroboration 
activity). 

Kang and Stasko (2011) identified four main activities 
(noting that these activities overlapped and intertwined 
as the project developed):

1.	 Construct conceptual model of issues

2.	 Collect information

3.	 Analysis

4.	 Report findings

Similarly, Baber et al. (2018) demonstrate that the 
experienced intelligence analysts will continually test 
their interpretation of their analysis through practice 
briefings, working through an alternating sequence of 
broad high-level questions and narrow feature-specific 
analyses to refine the conceptual model of the analysis.
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APPENDIX B: NOTIONS OF 
EXPLANATION IN MACHINE LEARNING
The challenge of enabling people to understand the 
output of computer algorithms has gone hand in hand 
with the development of computing technology. Once 
computers could, in some sense, work autonomously 
on data then there was a need to appreciate not only 
the solution that the computer had produced but also 
the rationale for this solution (if only to determine 
whether any disagreement between the actual and 
expected results were due to problems with the 
algorithm or with the data on which the algorithm 
had been applied). Thus, there is discussion of 
explanation in expert systems (Swartout, 1983; van 
Melle et al., 1984), context-aware computing (Bellotti 
and Edwards, 2001), recommender systems (Cramer 
et al., 2008; Herlocker et al., 2000) and a call for 
Explanation-aware Computing (EXaCT 2008). As a 
starting point for the ways in which the contemporary 
ML community approaches explanation, it is worth 
considering how Langley et al. (2017) consider the 
operation of an agent that can produce an explanation:

1.	 Given a complex set of objectives that require an 
agent’s extended activity over time

2.	 And given background knowledge about 
categories, relations, and activities that are 
relevant to these objectives

3.	 Produce records of decisions made during plan 
generation, execution, and monitoring in pursuit 
of these objectives

4.	 And produce summary reports, in human 
accessible terms, of the agent’s mental and 
physical activities

5.	 And produce understandable answers to questions 
that are posed about specific choices and reasons 
for them.

To perform these steps, the ‘explainable agent’ needs 
to be able to represent its knowledge in a way that 

supports explanation so that a human can understand, 
needs to represent changes in this knowledge in 
episodic memory, and needs to be able to use this 
episodic memory to answer questions that require 
rationale for actions.

Some ML algorithms rely on assumptions about the 
data on which they are trained. For example, there 
might be an assumption on the likelihood of features 
that are being clustered or how closely the features 
would need to be related to fit a cluster. Some ML 
algorithms allow users to modify the number of 
clusters to produce, or the degree of closeness between 
features. In both cases, when the algorithm produces 
an output, it does so based on the assumptions and 
settings. 

The person who uses the output might not be aware 
of these assumptions or settings or might not realise 
how changing these affects the output. Furthermore, 
some data sets might involve very sparse instances 
of some of the features. For example, there might be 
many instances of normal events and few instances of 
unusual events. In these circumstances, it is common 
to use sampling techniques (Hacibeyoglu and Ibrahim, 
2018) which can involve generating artificial entries for 
the minority class (over-sampling), removing entries 
from the majority class (under-sampling), or a hybrid 
approach combining the two. While this can resolve 
problems that the data cause for the algorithm, it can 
result in a data set that deviates from the original set 
(such that, for instance, if one was to produce summary 
statistics on the over- or under-sampled set the results 
would differ from the original – in the same way that 
transformation of the data (e.g. to allow assumptions 
of normality) will alter the summary statistics). Unless 
the sampling or transformation approaches are made 
clear to the consumers of the algorithm’s output, there 
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might be misunderstanding or confusion of the features 
that are being used.

Sridharan and Meadows (Sridharan and Meadows 
2019) state the following principles for explanation 
generation:

1.	 Explanations should present context-specific 
information relevant to the task, domain, and the 
question under consideration at an appropriate 
level of abstraction.

2.	 Explanations should be able to describe 
knowledge, beliefs, actions, goals, decisions, 
rationale for decisions, and underlying strategies 
or models in real-time.

3.	 Explanation generation systems should have 
minimal task or domain-specific components.

4.	 Explanation generation systems should model and 
use human understanding and feedback to inform 
its choices while constructing explanations.

5.	 Explanation generation systems should use 
knowledge elements that support non-monotonic 
revision based on immediate or delayed 
observations obtained from active exploration or 
reactive action execution.

The interpretation of explanation (and its associated 
concepts as outlined in Table 1 and Table 2) depend 
on the nature of the ML algorithms that are being 

applied; some of these might rely on correlations 
within data sets, others might extend the notion of 
correlation to seek to define clusters in these sets, and 
others might seek to maximise reward functions. From 
this perspective, a focus of explanation is on either 
the data set being explored or the operation of the 
algorithms themselves. So, for example, Gunning and 
Aha (2019) define explainable AI (XAI) in terms of 
“AI systems that can explain their rationale to a human 
user, characterize their strengths and weaknesses, and 
convey an understanding of how they will behave in 
the future.”

To formalise the relationships within XAI, Holzinger et 
al. (2020) propose a process model (Figure 14). In this 
the human, h, or machine, m, produces a statement, s, 
such that s = f (r, k , c) – where r: representation of 
unknown fact relating to an entity, Ue; k: pre-existing 
knowledge; c: context.

In this model, the ideal state is when mh = mm = ground 
truth (gt) = sh = sm. However, gt is seldom fully defined, 
and the models that humans create tend to be causal and 
the models that machines create tend to be relational 
(e.g. correlation, regression, distance, similarity). From 
this, explainability “…highlights decision relevant 
parts of machine representations, rm, and machine 
models, mm – i.e. part which contributed to model 
accuracy in training or to a specific prediction. It does 
not refer to a human model, mh.” (Holzinger et al., 

Figure 14. A process model of explanation [Holzinger et al., 2020]
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2020, p.195). Leaving aside the omission of the human 
model (which we revisit in Section 6), an interesting 
aspect of this process model is its recognition of the 
ways in which aspects of the situation (defined by a 
ground truth) are represented (by human or machine) 
to create a statement that provides an explanation. This 
is, in principle, like the covering law and situation 
awareness; possibly a combination of these concepts, 
something akin to the data-frame model in (Section 4).

Our review argues (in Section 4) that explanations 
offered by humans will rarely, if ever, begin from the 
perspective of demonstrating the process by which a 
conclusion is reached. That is, human explanation 
seldom begins with the algorithm (even in education), 
but, rather, begins with the data that support the 
algorithm and with instances that enable the limits of 
the algorithm to be explored (i.e. counter-factual cases). 
As the discussion of linguistics suggested, human 
explanation tends to seek minimal cognitive burden 
(on explainer and explainee) and, by implication, 
XAI also has an overarching goal of transparency 
without overhead to increase the trust that humans will 
place in the AI (Borgo et al., 2018; Fox et al., 2017; 

Lipton, 2016). From this, approaches which focus on 
evaluation of algorithm outputs side-step the question 
of explanation (or, at least, imply that an explanation 
is equivalent to a repeatable output of the algorithm). 
This implies a series of trade-offs, e.g. between 
transparency (in terms of algorithmic complexity), 
explainability, and trust.

One way of conceptualising this is in terms of 
performance vs. interpretability, as shown in Figure 15. 
In some versions of this figure, the phrase performance 
is used in preference to algorithmic complexity, but this 
begs the question of whether more complex algorithms 
always result in better performance. What we can 
note is that the algorithms with higher complexity 
(which either involve black box, such as deep learning, 
reinforcement learning, recurrent or convolutional 
neural networks, or involve combinations of several 
algorithms, e.g. random forests with their use of many 
decision trees) are difficult for humans to simulate. 
While the algorithms that make use of regression 
or correlations can (to some extent) be simulated by 
human observers (in that the data that are used and the 
mathematics applied to these data can be appreciated 

Aspect Definition

Accuracy How well an explanation predicts unseen data 

Fidelity The explanation ought to be close to the predictions of the explained model 

Consistency The explanation should apply equally well to any model trained on the same data set

Stability When providing explanations to instances, similar instances should produce similar 
explanations

Representativeness A highly representative explanation is one that can be applied to several decisions on several 
instances

Certainty If the model at study provides a measure of confidence on its decisions, an explanation of this 
decision should reflect this

Novelty This property refers to the capability of the explanation mechanism to cover instances far from 
the training domain

Salience (of features) The explanation should pinpoint the important features

Table 7. Aspects of evaluating an algorithm
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sufficiently to be able to either imagine the result or 
calculate instances by hand), the algorithms which 
maximise reward tend to be more opaque (and can be 
referred to as black box models).

EXPLANATION AND 
INTERPRETABILITY
While we used interpretability in Figure 15, it is 
important to note that this is not a monolithic concept, 

as Lipton (2016) points out, but consists of different 
levels of transparency. At the level of the entire model, 
the ability of the human to simulate the operation of 
the entire model contributes to the model transparency. 
It is worth noting, at this point, the simulatability 
(in this context) becomes a function of the model’s 
transparency and the knowledge, skills, and abilities 
of the specific human, e.g. in terms of how well the 
person understands the situation, or the data, or the 
algorithm (and different stakeholders may vary in 

Table 8. Types of information used in explanations in recommender and decision support systems  
[Nunes and Jannach, 2017]
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terms of their level of understanding for each of these 
aspects). At a lower level, each part of the model might 
have their own transparency. In part, this creates local 
simulatability (for each part of the model) but also 
relates to the decomposability of the whole model to 
its constituent parts. In this case, transparency might 
relate to how easily the human can apply intuitive 
understanding of the input data or the settings that the 
model applies to these. 

A potential problem here might be that the model 
weights might be situation dependent (meaning 
that understanding the impact of the weights in one 
situation might not generalise to other situations), or 
these weights might not be understandable but the 
output (say, in the form of a regression plot) might be 
– which could mean that the understanding is based on 
the human’s ability to impose meaning of the output 
(rather than knowledge of the model). Furthermore, 
the algorithms applied (either in parts or to the whole 
model) have their own degree of transparency.

Although black box models usually perform better than 
simpler (but intrinsically explainable) ML algorithms, 
such as linear regression, logistic regression, and 
decision tree (Chen et al., 2018; Ribeiro et al., 2018), 

people tend to trust the latter more, because they are 
easy to understand. That is, poor interpretability of 
black box models can impair willingness to deploy 
these potentially more accurate models. This might be 
particularly true in high-stakes scenarios such as self-
driving cars, medical diagnosis, criminal investigation 
and profiling, and financial fraud (Molnar, 2019; 
Singh et al., 2020; Deeks, 2019) when the explanation 
becomes part of an auditable investigative process. 

A survey of medical practitioners (Tonekaboni et al., 
2019) suggested that “Clinicians overwhelmingly 
indicated that the model’s overall accuracy was not 
sufficient.” Clinicians want to know the reason behind 
the model prediction. The interpretability could 
certainly increase  social acceptance and could be 
used to  manage social interactions (Doshi-Velez and 
Kim, 2017). Even models that fall short in accuracy 
were deemed acceptable so long as there is clarity 
around why the model under-performs (Tonekaboni 
et al., 2019). Moreover, a single metric, such as 
classification accuracy, is an incomplete description 
of most real-world tasks. Although the typical way to 
evaluate the model – accuracy, precision, recall, F1-
score – could estimate the quality of a model in many 
cases, it is worth noting that there are several ways 

Figure 15. Contrasting ML algorithms by interpretability and algorithmic complexity
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these evaluations can go wrong (e.g. because of bias 
and errors due data leakage, or data set shift arising 
from separation of training and validation of data 
set). However, people could be more sensitive to the 
errors and bias in if they were provided explanations 
and could correspondingly modify models. In order 
to address this urgent, interpretability tools (IT) are 
being developed (Bhatt et al., 2020; Singh et al., 2020; 
Tonekaboni et al., 2019).

From the field of robotics, researchers have sought to 
allow humans to ask questions of the robot that allow 
it to explain its planning and reasoning processes. For 
example, Fox et al.’s (2017) Explainable Planning 
(XAIP) requires the robot to justify why the planner 
chose specific actions over others, why it believed 
certain actions could not be executed, and why / if 
replanning is needed, etc. This approach tends to 
produce overly verbose statements that do not always 
reflect the nuances of the situation (relying, instead, 
on the knowledge structures that the robot employs). 
To address the problems of verbosity, Amir and 
Amir (2018) apply the HIGHLIGHTS program to 
generate summary reports of the robot’s decision-
making over time (as opposed to explanations of each 
individual decision). However, this means that the 
robot is compromised on its ability to address specific 
decisions.

Recognising that human explanations often rely on 
contrasts (between choosing action X or choosing 
action Y in a situation), Borgo et al. (2018) developed 
XAI-Plan to provide the rationale for a robot’s initial 
plan, with options for actions which can then be used 
to justify the selection of one action over another in 
a given situation. A similar approach, developed by 
Krarup et al. (2019), generates a possible plan based 
on the human’s question (i.e. by treating the content of 
the question as a foil or counterexample) and compares 
this possible plan with the one that had been followed. 
This use of contrastive explanations allows ‘why’ 
questions to be addressed. Korpan and Epstein (2018) 
developed the Why-Plan system to allow humans to 
ask questions of robots performing navigation tasks. 
While the motivation for this work seems to be to work 
from the assumption that human explanations involve 
facts and foils (i.e. evidence and counterexamples), it 
is not clear that the ensuing dialogue is natural. Nor is 
it apparent that the ability to answer ‘why’ questions 
necessarily involves generation of a foil, even if it is 
implicit (Hilton and Slugoski 1986, Lipton 1990, 
Hilton 1990, Lombrozo 2012).

Alternative approaches to the provision of explanation 
by robots focus on stating the purpose or goal that the 
robot is seeking to achieve (McClure 2002; McClure et 
al. 2003; Dannenhauer et al. 2018a; Dannenhauer et al. 
2018b). To do this, the robot needs to be able to state 
beliefs (in terms of what information it has obtained 

Figure 16. Primary display modes for recommender and decision support systems [Nunes and Jannach, 2017]
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from the environment and how it has interpreted this), 
desires (in terms of the purpose or goal it is seeking 
to achieve), and intentions (in terms of the plan that it 
will apply to achieve the goal). This takes us towards 
the concept of explicable planning: in terms of being 
able to generate plans that are amenable to human 
explanation; and explanation generation: the ability to 
tailor explanations to humans with given knowledge 
(Chakraborti et al. 2018; Chakraborti et al. 2017; 
Sreedharan et al. 2017).

ML and AI communities are developing along three 
broad lines of explanation:

1.	 Approaches which are sufficiently simple to 
support simulatability (e.g. linear or logistic 
regression, decision tress, naïve Bayes, Hidden 
Markov Models) either because the human 
operator can calculate examples of these or 
because the models can be visualised in ways that 
make cause-effect relations easy to appreciate.

2.	 Approaches which present the goals or plans by 
which the agents are reasoning. These have been 
considered in the preceding discussion.

3.	 Approaches which allow induction of models, i.e. 
which can allow simplification of the underlying 
model or modification of weights in the model 
to reveal how features can be changed to apply 
different rules.

Approaches to explanation could also focus on the 
effect of one or two features on predicted outcome. 
Feature importance is used across many different 
domains – finance, healthcare, facial recognition, 
and content moderation. Also known as feature-
level interpretations, feature attributions, or saliency 
maps, this method is by far the most widely used 
technique (Gilpin et al., 2019; Baehrens et al., 2010) 
and is highly requested by ML practitioners, like what 
was investigated in the medical domain “Clinicians 
repeatedly identified that knowing the subset of 
features deriving the model outcome, is crucial.” 
(Tonekaboni et al., 2019). Approaches to identifying 
feature weighting include partial dependence plot 

(PDP) (Friedman, 1999), individual conditional 
expectation plot (ICE) (Goldstein et al., 2014), and 
accumulated local effects plot (ALE) (Apley and Zhu, 
2020), etc. These are illustrated in Figures 10, 11 and 
12.

By considering specific instances that could be 
analogous to other instances (either in k-nearest space, 
Caruna et al., 1999) or using case-based reasoning 
(Kim et al., 2014; Doshi-Velez et al., 2018) one can 
provide explanations by example. This assumes that 
the user can not only spot the similarity between the 
examples that have been defined as analogous, but also 
reason as to why these analogies have been drawn.

In terms of model induction, a popular approach 
involves some form of explanation by simplification, 
in which a surrogate model is built from the trained 
model to be explained. Explanation, from surrogate 
techniques, could be categorised as global or local. 
Global explainability attempts to understand the high-
level concepts and reasoning used by a model. Local 
explainability aims to explain the model’s behaviour 
for a specific input (Guidotti et al., 2018). Surrogate 
techniques characterise the concepts learned by the 
model to create simpler models and then explain the 
model’s outcome by listing those features which are 
most relevant to the outcome. The ideas described 
above have been implemented in feature extract 
interpretability tools such as Local Interpretable 
Model-Agnostic Explanations (LIME) (Ribeiro et al., 
2016). LIME builds an explanation around a specific 
solution instance, i.e. a local prediction, in which the 
probability that the instance belongs to a specific class 
is a function of the features around this instance. In this 
way, sparse linear models can be interpolated from the 
data set to produce a simplified version of the output 
(which focuses on the relations between these data 
around the specific instance rather than the model as 
a whole). For this latter reason, the approach is model-
agnostic and concentrates on local fidelity, i.e. the 
relations within the vicinity of the specific instance. 
This could mean that the features selected might 
not always apply in other instances, i.e. that locally 



56

Appendix B: Notions of explanation in machine learning
Understanding The Problem Of Explanation When Using Artificial Intelligence In Intelligence Analysis

important features might not be globally important. 
However, it does mean that the explanation can be 
couched in terms that the human is able to interpret 
and understand. In effect, the approach echoes the 
logic of Figure 14 and of the covering law.

An extension of this approach is to create a set of 
instances which can be used to anchor subsequent 
reasoning, i.e. Anchor Local Interpretable Model-
Agnostic Explanations (aLIME) which can be 
presented in the form of production rules, i.e. if X 
then Y. In addition to a surrogate model, we could 
explain model outcome by computing the contribution 
of each feature to the prediction from a game theory 
aspect. The idea is adding the feature value that would 
contribute the most to the prediction and iterate 
until all feature values are added. Shapley Additive 
Explanations (SHAP) creates an explanation in terms 
of the contribution of each feature to the prediction 
which then assigns each feature an importance value 
(Lundberg et al., 2017). Similarly, ELI5 (Fan et al., 
2020) provides a way to compute feature importances 
for a black box estimator by measuring how score 
decreases when a feature is not available. Visualisations 
of LIME and SHAP are shown in Figure 17.

For black box models (which use deep learning 
forms of AI), it might not be possible to define 
specific features that the models use. Consequently, 
the  outputs of these models can be considered in 
terms of actions the model performs (e.g. making a 
move in a board game). From this, the human might 
be able to infer plausible rules that the model could be 
following. For example, Krening et al. (2016) has one 
reinforcement learning model select action according 
to a reward structure (which defines its policy) and 
a second model maps the relations between actions 
and model states to a lexicon of user-generated terms. 
This creates an output, from the second model, of 
best-fit approximations of user terminology to (first) 
model performance. While this might not give a full 
and precise account of the activity of the first model, 
it produces output that is human-understandable. One 
can also use reinforcement learning to model aspects 
of human decision-making (Section 3).

Figure 18 shows a simulated credit card fraud detection 
task: analysts are presented with information relating 
to credit card transactions, e.g. amount, CVC, location, 
etc. These are either in the form of text displays or 
red / green alerts. A reinforcement learning model 

Figure 17. Visualisations output by the implementation of the SHAP Python package (middle), and LIME (right). Top 
row: global explanations. Bottom row: local explanations [from Kaur et al., 2020]
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was trained (based on timings for eye movement and 
fixations) to attend to regions of the display with a 
reward given for correct identification of a fraud / no 
fraud. The task was repeated with human participants 
and, while the number of cues fixated (left) differ 
between human data and model, the trends are 
remarkably consistent. Further investigation suggests 
that the model responded to similar cues to the human 
and learned to identify fraud types in a manner 
comparable to human analysts. This (and the Krening 
et al., 2016 study) suggest a promising line of research 
in terms of using AI to model decision strategies so 
that specific features that are integral to a decision can 
be identified.

Alternatively, local explanations, i.e. accounts which 
reflect specific instances, can be created as saliency 
maps (Wang et al., 2015; Greydanus et al., 2018). 
Figure 19 shows examples in which an agent (trained 
using reinforcement learning) responds to features (in 
Atari video games). The resulting saliency map shows 
when and how the agent responded, which can be used 
to infer the strategy that is being applied. While this 
need not directly and completely reflect the policy (in 
terms of the relationship between action and reward 
that the agent is learning) it can allow the human 
analyst to form beliefs as to how the agent might 
behave in similar circumstances.

By way of overview of these different approaches, we 
can consider them in terms of the situation awareness 
levels.

	● Level 1 – The human interprets the features that the 
algorithm is using and forms beliefs to explain the 
relevance of these features. This involves indicating 
the data, or features in the data, that the algorithm 
is using. This can allow the human to infer beliefs 
around the output (Lipton. 2016; Ribeiro et al., 
2016), or the use of saliency maps to allow the 
human to infer the algorithm’s rules (Wang et al., 
2015; Greydanus et al., 2018), or the use of belief-
desire-intent, especially in robotics (Harbers et 
al., 2012; Broekens et al., 2010), to explain why 
behaviour changes as the situation changes (Floyd 
and Aha, 2016; Lomas et al., 2012), or to present 
the plan that is being followed (Borgo et al., 2018; 
Chakraborti et al., 2019; Sreedharan et al., 2018) 
towards a goal or purpose.

	● Level 2 – The algorithm presents its beliefs, i.e. the 
rules and principles that it is applying to the feature 
in a human understandable form. This could 
involve explanation by simplification, using LIME 
(Ribeiro et al., 2016), or user-defined abstract 
features (Kim et al., 2017), or the algorithm 
offering a policy explanation (Miller et al., 2019), 
or presentation of model predicates to fill gaps in 

Figure 18. Comparing human and model performance in fraud detection task [Chen et al., 2017]
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Figure 19. Saliency maps for Atari game play [Greydanus et al., 2018]

(a) Breakout: learning what features are important

(b) Breakout: learning a tunneling stategy

(c) Pong: learning a kill shot

(d) Space Invaders: learning what features are important and how to aim.
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user knowledge through use of counterfactual foils 
(Borgo et al., 2018; Sreedharan et al., 2018).

	● Level 3 – The algorithm can show how it is 
choosing a decision option from others (Amir and 
Amir, 2018), or provide a global explanation from 
combining local instances (Ribeiro et al., 2016), 
or can modify its decisions in light of human 
feedback (Holzinger et al., 2018).

THE USEFULNESS OF 
INTERPRETABILITY TOOLS
While interpretability tools could help people gain 
insight into the algorithms, these do not always 
guarantee a useful explanation. An inappropriate 
explanation could also lead people to over-trust or 
mistrust model. For example, when the explanation 
is not faithful and simplifies a model’s inherent 
complexity too much. Although the explanation might 
be more understandable and convince people more, 
this could contradict the underlying model (Kaur et al., 
2020; Yang et al., 2020; Smith-Renner et al., 2020). 
If the surrogate model, for instance, is built on a rare 
or highly specific local instance, then there might be a 
risk of generalising from this to other instances.

The explanation could also interfere with the analyst’s 
own sensemaking. For example, people might 
superficially accept an explanation that is presented 
visually just because it looks more intuitive (Kaur 
et al., 2020). As a result, a good explanation should 
balance the fidelity (and validity) of the underlying 
algorithm and the understandability for people.

Ribeiro et al. (Ribeiro et al., 2016) offered three ways 
to obtain the utility of explanations. They defined the 
most significant features in classifiers and calculated 
their recall rate. Since high feature recall rate alone 
does not assure that users get insight into the model, 
they also used subjective rating of trustworthiness of 
the algorithm. This involved giving users a test set 
containing outcomes that were known to be wrong, 
and then defining the rules to produce outcomes that 
users classify as untrustworthy. Next, they compared 

these untrustworthy rules with rules which obtained 
high ratings of trustworthiness by F1 score.

Schmidt and Biessmann (Schmidt and Biessmann, 
2019) deigned a quality score for interpretability, 
based on an information transfer rate (ITR). In this, 

 denotes the mutual information between 
 the annotations provided by human labellers (they 

were only shown the explanation), and the model 
predictions .  could be seen as an 
objective evaluation of the IT fidelity.

In summary, we can evaluate the quality of ML 
by feature recall rate and people’s error-detection 
capability of the models (in terms of ratings of 
trust). Kay et al. (2015) sought to improve the F1 
score by introducing a new measure, acceptability of 
accuracy, which is a mixed-effects Bayesian logistic 
regression against three different weighted power 
means of precision and recall (harmonic, geometric, 
and arithmetic). Lim and Dey (2011) have explored 
similar questions around how much uncertainty is 
acceptable, how much accuracy is sufficient, and how 
to best mitigate the uncertainty. Papenmeier et al. 
(2019) show that accuracy is more important for user 
trust than explainability, and users cannot be tricked by 
high-fidelity explanations into trusting a bad classifier. 
Poursabzi-Sangdeh et al. (2018) varied interpretability 
by two factors: the number of input features and the 
model transparency (clear or black box). They showed 
that increased transparency hampered people’s ability 
to detect when the model makes a sizable mistake and 
correct for it, seemingly due to information overload. 
Even more surprisingly, contrary to what one might 
expect when manipulating interpretability, they found 
no improvements in the degree to which participants 
followed the model’s predictions when it was beneficial 
to do so. Their counterintuitive results suggest that 
users are bad at differentiating the quality of model if 
model designers only offer unorganised raw features.
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One implication of the Poursabzi-Sangdeh et al. (2018) 
study is that users can struggle with information 
overload. This is also true when it comes to presenting 
explanations. For example, Narayanan et al. (2018) 
varied information load by manipulating the length 
of explanation, the number of cognitive chunks 
in explanation, and the number of times the input 
conditions appeared in explanation. Their result 
showed that greater complexity results in higher 
response times and lower satisfaction. 

Whether explanations are human-meaningful (or, in 
other words, whether the feature content is related to 
the problem) can significantly affect perception of a 
system’s accuracy independent of the actual accuracy 
observed from system usage (Nourani et al., 2019). 
Their empirical result implies the importance of the 
relatedness of feature to the problem by participants 
significantly underestimating the system’s accuracy 
when it provided weak, less human-meaningful 
explanations.

Many end-users such as clinicians believe that carefully 
designed visualisation and presentation can facilitate 
further understanding of the model (Tonekaboni et al., 
2019; Chatzimparmpas et al., 2020; Kaur et al., 2020). 
However, visualisations can also lead users to believe 
that a model has higher transparency and intelligibility 
than it might actually have (Kaur et al., 2020) and that 
poor visualisations can result in lower levels of trust, 
even if the model is accurate (Yang et al., 2020).
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APPENDIX C: APPLYING THE 
FRAMEWORK TO A SPECIFIC USE CASE
As noted previously, the workshops produced a series 
of process flow models that illustrated the ways 
information is processed in the different scenarios 
experienced by attendees. In this section, we use 
a version of financial compliance investigation of 
possible insider trading on the stock market. Financial 
trading is heavily regulated and can carry severe 
penalties, both for those individuals prosecuted and the 
companies that employ them.

Having produced an initial process model (the red 
nodes in Figure 20), we consider what information 
might be relevant at each stage (the grey nodes in 

Figure 20). This provides an initial sketch of the 
process and the information that is used. From 
this, we construct Table 9, where the information 
is considered in terms of whether it is a feature (i.e. 
a discrete item or source of information), a cluster 
(i.e. a combination of features), a belief (i.e. a rule or 
covering law that defines the cluster of features), or 
a policy (i.e. a regulation or principle that associates 
belief with specific action). Table 9 also introduces the 
stakeholders who might be involved in this process and 
indicates whether we assume that these will relate to 
the different information types.

Stakeholders

Information 
type

Examples Analysis Internal External Externalb

Features Alerts 

Individual {position, trades, 
order, price...}

Market {price, movement…}

Open Source {news reports, 
stock market information…}

Compliance Officer

Leak / Conspirator

Portfolio manager

Compliance Team

Cluster Trader Activity Alert engine

Beliefs Statistical anomaly

Normal trader activity

Market performance

Unusual or suspicious activity

Alert criteria System support

Compliance Authority

Policy Case Review process

Financial Misconduct 
regulations

Compliance Board

Legal team Senior Compliance Board

Company Board

Marketing / PR

FSA

SEC

Shareholders

PR firm

Media

Investors

Table 9. Financial compliance example
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Figure 20: Saliency maps for Atari game play [Greydanus et al., 2018]

This example provides an initial outline of when and 
where explanation might be necessary. For example, 
when information is passed between stakeholders or 
when specific information types are being considered. 
For the latter, this might involve justifying the inclusion 
(or exclusion) of features or the definition of a belief 
(in terms of the rules / covering law that is being 
applied in the investigation). For the former, this might 
involve the translation of information types – either 
to protect confidentiality or to cater for differences 
in knowledge between stakeholders. These different 
forms of explanation are considered by applying our 
explanation framework to this example.

EXPLANATION TYPES IN THE 
FINANCIAL COMPLIANCE 
EXAMPLE
In the financial compliance example (Table 9), we will 
assume that the explainer, X1, is the compliance officer 

who is conducting an investigation. The explainee, Xn, 
could be any of the stakeholders in Table 9,. 

As noted previously, how the explanation is couched 
and presented, by X1, will depend on which of the 
stakeholders will be the explainee, e.g. in terms of how 
much of the set of features are to be shared (as some of 
this might either be commercially sensitive or a matter 
of conjecture as the investigation unfolds), or in terms 
of the how much of the belief is shared (as some of this 
might be specific to the company or might highlight 
particular investigatory practices which are sensitive).

S1 ≈ S2 AND R1 R2

In the financial compliance example (Table 9), the first 
instance, X1 and X2, might be two compliance officers 
(who have access to the same set of features and share 
the same beliefs (knowledge) of the investigation 
process) and the same understanding of policy. 
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In this case, situation awareness and relevance can be 
assumed to be common, and any explanation involves 
the exchange of information to ensure that both are 
on the same page (i.e. monitoring that their respective 
knowledge bases sufficiently overlap).

SX1 ≈ SX2 AND RX1 RX2

If there is disagreement between X1 and X2 (either, 
for example, because the compliance officers draw 
different conclusions or because the compliance officer 
is outlining the case to the trader as part of an initial 
investigation), the features will be shared (e.g. in the 
form of a set of evidence) and interpretation of these (in 
terms of whether this constitutes lack of compliance) 
involves a mismatch in terms of relevance. In this 
instance, the purpose of the explanation is to seek 
alignment between X1 and X2 in terms of relevance, 
i.e. whether there is a compliance case to answer.

SX1 ≈ SX2 AND RX1 RX2 AND ∆RX2 ≈ 
RX1⊆RX1

Alignment, as mentioned previously, does not mean 
there should be absolute agreement in R. In this 
instance, the aim would be to ensure that, perhaps 
through further sharing of situation features, X1 and 
X2 agree on the feature set to be used for the analysis 
and on the grounds for the investigation. In this case, 
R describes the basis of the case (even if there is not 
agreement that the evidence supports this).

S1 ≠ S2 AND R1 R2 AND ∆R2 ≈ R1⊆R1 
AND A2 = S2

Consequently, the initial investigation might be to 
encourage a change in the behaviour of X2. For 
example, in a compliance investigation, an issue 
might arise from a lack of record keeping and so an 
outcome might be for X2 to appreciate how specific 
features of the situation can be interpreted in terms of 
specific beliefs, such that paying more attention to the 

Figure 21. Monitoring trader activity [https://www.trapets.com/services/instantwatch-market/]

https://www.trapets.com/services/instantwatch-market/
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interpretation and recording of these features could 
reduce the possibility of investigation in the future.

SX1 ≠ SX2 AND RX1 RX2

Where there continues to be misalignment between X1 
and X2, the explanation would build a detailed case 
to demonstrate how specific sets of features can be 
interpreted in terms of specific beliefs and / or policy. 
This type of scenario is more likely to occur between 
an X1 and X2 who come from different backgrounds 
and, therefore, have different knowledge sets i.e. 
a compliance officer and the company lawyer for 
instance.

SX1 ≠ SX2 AND RX1 RX2

From the further investigation, while both parties 
might share the beliefs and understanding of policy, 
they might disagree on the definition or interpretation 
of features.

VISUALISING MACHINE 
LEARNING EXPLANATIONS
We briefly consider the role that ML might play in this 
example through the different information types (as 
these apply to examples of financial decision-making). 
In this section, we consider a variety of financial 
decision-making (from compliance analysis to loan 
underwriting). The intention is to provide examples of 
the types of user interface (rather than algorithms) that 

Figure 22. Event detection with visual analytics [Leite et al., 2017]

Screenshot of EVA (Event detection with Visual Analytics). (A.1, A.2) Temporal Views: a filler was applied in (A.2) to 
the period from January 2014 until April 2014). (B) Score Construction View: each line represents a transaction and its 
scores. (C) Amount vs Overall Score Scatterplot. (D.1, D.2) Ranks of accounts that received the highest amounts of money 
from the selected account. (E) Accounts Selector: bars shows the amount of transactions from each account. (F) Dynamic 
table of raw transaction data. In all views, elements that represents suspicious data are highlighted in red.

A.1

A.2

B

F

C E

D.1

D.2
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have been proposed to support decision-makers. By 
analogy, we suggest that variants of the different user 
interfaces could be considered to support the role of 
the compliance officer in the use case.

FEATURES
By displaying key features that are relevant to trading 
alerts, Figure 21 provides a dashboard that an analyst 
can use to interpret alerts (listed on the bottom-left of 
the screen).

The implication of displaying features is that this will 
allow the compliance officer to quickly ascertain the 
key features which led to an alert being raised. In this 
case, the explanation is seeking to ensure that the 
situation seen by the automation that generated the 
alert aligns with that seen by the compliance officer. 
This would mean that S1 ≈ S2. If one assumes that the 
definition of the feature sets (S) follows similar rules, 
then this could also imply that R1 ≈ R2. However, the 

display solely of features does not allow the analyst to 
either interrogate the underlying beliefs that led to the 
automation raising an alert or to question this belief. 
Moreover, the display is the motivator for further 
investigation (probably drawing on other information 
sources) that will result in the manual production of a 
report that summarises the investigation.

CLUSTERS
Providing a dashboard with key features requires 
the analyst to consult additional sources to build up 
a composite profile of the activity. Elaborating the 
dashboard to create clusters of these features (Figure 
22) could be useful in identifying patterns and trends.

Collating features into charts and tables provides 
the analyst with a summary that can be interpreted 
in terms of rules. Indeed, an experienced analyst 
would most likely recognise recurring patterns across 
different instances. That is, similar activities might 
produce clusters that have similar visual appearance, 
such that there would be fingerprints that the analyst 
picks up on that corresponds to specific activities. In 
this way the alert relates not only to specific features 
but to the groupings of these features. While this might 
aid recognition-primed decision-making (Klein et al., 
1989), it does not provide access to the underling rules 
used to generate the clusters.

Figure 23. Illustrating beliefs in loan underwriting 
[Sashan et al., 2020]

Figure 24. Discriminating fraudulent from 
nonfraudulent transactions [Paula et al., 2016]
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BELIEFS
In Figure 23, the rules that are used to reach a decision 
are listed, together with an indication of whether the 
rules have been met or breached (with pass / fail, colour 
coding, accept / decline in the top of the display). 
Additional information, in the form of weighting for 
contributing features, is presented in the next part of 
the display, together with recommendation for fund / 
reject. In this way, the automation’s rules are exposed 
to the human decision-maker. The textual explanation, 
at the bottom of the screen, is clear and concise. In 
this instance, we can claim that the user interface is 
intended to support Sx1 ≈ Sx2 and Rx1 ≠ Rx2 and Rx2 
≈ rx1⊆Rx1 (where the automation, X1, is providing 
sufficient information to allow the analyst, X2, to agree 
with the definition of relevance that is being applied in 
each application). What is not apparent here is whether 
the human is able to apply counterfactuals to the 
decision. For example, if we consider Application 4, 
the heuristic rule base identifies ‘loan criteria, etc.’ as 
below criteria, but what might happen if the applicant 
was able to amend this?

POLICY
Paula et al. (2016) describe an autoencoder with three 
hidden layers (the middle one, shown in Figure 24, has 
three neurons). Using a training set of 20 fraudulent 
transactions defined as ‘yes’ and ‘no’ shows that the 
middle layer was capable of linear separation of these. 
While this does not tell us how the autoencoder is 
making its decisions, this does provide an indication of 
how the policy that it is discovering is being applied. 
In this instance, the aim is to support, to some extent, 
Sx1 ≠ Sx2 and Rx1 ≈ Rx2 where it is recognised 
that the automation, X1, is not focusing on the same 
features as the analyst, X2, but there is an attempt to 
allow alignment in the definition of relevance.
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