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PART I: 
EXECUTIVE 
SUMMARY
This report comprises the findings of CREST funded 
research into project into making decisions about 
information value. It addresses an important challenge 
for intelligence analysts. Intelligence analysts are 
typically required to process large volumes of data in 
a timely manner in order to extract useful information 
and detect potential security threats. 

This relies on consistent judgements by the analyst 
in order to efficiently process the data and effectively 
identify useful information. Research and historical 
evidence have shown that analysts’ judgements are often 
inconsistent due to the mass of data, the variation in 
types and nature of intelligence information and the time 
pressures the analyst is operating within. Consequently, 
intelligence analysts will often take decisions that 
deviate significantly from those of their peers, from 
their own prior decisions, and from training rules that 
they themselves claim to follow. Such inconsistency 
is mainly due to two types of errors; noise and bias, 
which complicate the intelligence analysis process and 
can result in key pieces of data being misclassified or 
overlooked with potential security threat implications.

The proposed project aims to develop, train and evaluate 
an innovative analytic approach to address these errors 
and enable analysts to achieve better judgements about 
the value of elicited information from intelligence 
reports. The innovation is in the embedding a machine 
learning method called the Dominance-based Rough 
Set Approach (DRSA) algorithm within a tool 
that enables an intelligence analyst’s interests and 
behaviour to be captured. This is designed to evaluate 
the consistency of analysts’ judgements at individual 

and group levels, as well as identifying key factors or 
biases which influence an analyst’s decision making. 

The findings were used to inform analyst training and 
as a decision aide within the tool to ensure more robust 
judgements are made. 

Specifically, the project aims to address the following 
research questions: 

1.	 By how much does individual analyst bias affect 
the quality of the decisions?  

2.	 Will incorporation of group decision support, as 
opposed to individual support, improve the quality 
of decisions? 

3.	 Do additional facilities of feedback in consistency 
and sensitivity analysis provide a support for 
better decision taking?

The DRSA tool is based on a prototype that was 
originally developed under a Ministry of Defence 
(MOD) innovation competition in 2016 and the further 
development of the tool in the course of the propose 
project comprised three layers.  

The first layer uses a classic DRSA machine learning 
approach to deduce relevant analyst insights from a 
subset of intelligence reports that can be applied to 
predict relevance of unseen intelligence reports.  

The second layer applies an innovative aggregation 
procedure (Chakhar, Ishizaka, Labib, & Saad, 2016) 
which incorporates a group decision taking facility 
into the tool to make it more relevant to an actual 
intelligence analysis team.

The third layer is devoted to validation and sensitivity 
analysis. This layered structure resulted in the 
development of a powerful decision tool that can be 
dynamically updated to monitor and capture analyst 
judgements to support training and provide real-life 
support to intelligence analysts. The existing DRSA 
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prototype tool, which was prior to the current project, 
covered only the first layer.

The project was conducted over three phases: Phase 1 
works with relevant stakeholders to capture data, and 
to design the tool to meet their specific needs. Phase 2 
is concerned with the development and testing of the 
tool and Phase 3 consists of an experimentation phase 
via systematic testing with relevant stakeholders during 
training workshops and experiments. 

The project was conducted by a multidisciplinary 
research team from academia and industry. The 
University of Portsmouth provided experts in root 
cause decision analysis and Operational Research (OR) 
techniques (Professor Labib), information elicitation 
(Professor Hope), multi-criteria decision analysis and 
DRSA (Dr. Chakhar) and criminal intelligence (Dr. 
James). Polaris Consulting provided expertise in OR, 

experimental design and software development within 
the MOD intelligence domain. 

The significance of the proposed approach is that 
it provides a tool that is user friendly yet capable of 
providing sophisticated analytics that can substantially 
improve decision taking, minimize risks, and unearth 
valuable insights that may otherwise have been lost. 
Since the team includes experts from security in both 
police and military contexts, one of the perceived 
benefits of exploitation is that there will be cross-
fertilisation between police intelligence and the military 
domains. 

Perceived benefit for security analysts is to continuously 
adapt and learn from previous mistakes using an 
approach that systematically improves accuracy and 
consensus in judgements in a timely manner. Figure 
1.1 shows a typical scenario of analyst scope. Figure 

Figure 1.1 Scenario analyst scope

Figure 1.2 Principle of DRSA
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1.2 shows the basic principle of DRSA method. And figure 1.3 shows the basic idea in the form of a typical intelligence 
reports assessment exercise for intelligence analysts.

The report consists of three parts. 

Part II is the core of the project and contains theoretical background, the tool design and its development, as well as 
validation and assessment of results. This part is also the base of an intended journal paper to be submitted. 

Part III is related to the design specifications of the software and planning for the testing sessions that we have 
conducted. Finally, Part IV summarizes disseminations of results 

Figure 1.3 Flowchart of typical intelligence reports assessment exercise for single analysts
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ABSTRACT
Intelligence analysts are typically required to process 
large volumes of data in a timely manner in order to 
extract useful and, ideally, actionable information and 
detect potential security threats. 

Research and historical evidence have shown that 
analysts' judgements are often inconsistent due to the 
mass of data received, the variation in types and nature 
of intelligence information and the time pressures the 
analyst is operating within. 

Such inconsistency is mainly due to two types of 
decision-making errors: noise and bias. These errors 
complicate the intelligence analysis process and can 
result in key pieces of information being misclassified or 
overlooked with potential security threat implications. 

The team-oriented aspects of intelligence analysis 
process further complicate the situation. To identify 
and address these errors and enable analysts to achieve 
better judgements about the value of information 
contained in intelligence reports, we have designed, 
implemented and validated an innovative decision 
support platform. 

This paper reports on a series of validation trials in 
which research participants took part in a simulated 
intelligence assessment task and were required to make 
decisions about in-coming intelligence information. 

We sought to assess the performance of individual and 
team-oriented analysts with respect to effectiveness and 
efficiency by examining patterns of ‘hits’, ‘misses’ and 
‘false alarms’. 

The main results of these simulations are: (1) the 
use of the developed tool (a) ameliorates slightly 
the effectiveness of individual intelligence analysis 
process and (b) improves considerably its efficiency; 
and (2) the incorporation of group decision support 
improves largely both the effectiveness and efficiency 
of intelligence analysis process.
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1.	INTRODUCTION
Modern intelligence analysis is complicated by 
the large volumes of incoming data that should be 
processed in a timely manner in order to extract useful, 
and ideally, actionable information and detect potential 
security threats. The analysis task relies on consistent 
judgements by the analyst in order to efficiently process 
the data and effectively identify useful information. 
Research and historical evidence (see e.g. DeRosa, 
2004; Fischhoff & Chauvin, 2011; Renya et al, 
2014) has shown that analysts’ judgements are often 
inconsistent due to a number of factors including the 
sheer mass of data, the variation in types and nature 
of intelligence information and the time pressures the 
analyst is operating within. 

Consequently, intelligence analysts will often take 
decisions that deviate significantly from those of 
their peers, from their own prior decisions, and from 
training or operational rules that they themselves claim 
to follow. Such inconsistency is mainly due to two 
types of errors: noise and bias. Here noise is defined as 
the variability of judgements or inconsistent decisions, 
whereas bias is defined as consistent diversion from the 
target (Adame, 2016; Hammond et al, 2006; Kahneman 
& Rosenfield, 2016). These errors complicate the 
intelligence analysis process and can result in key 
pieces of data being misclassified or overlooked with 
potential security threat implications (Heuer, 1999; 
Reyna et al, 2014)1. 

The situation is further complicated when considering 
team-based decision making, as opinions and 
unintentional (or intentional) biases within groups 
can lead to inconsistency and a lack of consensus. 
Due to the real-time working context, communicating 

1	 These two references  mentioned about biases explicitly. Noise was also mentioned but implicitly, as they called it disagreement, or fragmented opinions 
etc.
2	 This study concerns a project funded under the UK Ministry of Defence (MoD) Centre for Defence Enterprise (CDE) Autonomy and Big Data competition.

pertinent information (e.g. some relevant reports with 
crucial information about a planned attack) identified 
by one member of the analysts team to other team 
members become difficult since these team members 
are overwhelmed by the incoming reports and have 
to pause to absorb other new data. Thus, team-based 
decision making, or analysis of input from several 
intelligence agents presents a challenge to modern 
intelligence analysis due to the inherent inconsistency 
that individual as well multiple opinions can lead to.

An innovative analytic approach to identify and address 
inconsistency and enable analysts to achieve better 
judgements about the value of elicited information from 
intelligence reports has been designed and implemented. 
The innovation is in the embedding of the Dominance-
based Rough Set Approach (DRSA) (Greco et al, 2001) 
within a tool that enables an intelligence analyst’s 
interests and behaviour to be captured. The developed 
tool supports two levels of analysis. 

The first level uses the DRSA to deduce relevant analyst 
insights from a subset of intelligence reports that can 
be applied to predict relevance of unseen intelligence 
reports. 

The second level applies an innovative aggregation 
procedure (Chakhar et al, 2016) which incorporates a 
group decision taking facility into the tool to make it 
more relevant to an actual intelligence analysis team. 

In a study reported in Baldwin et al (2016)2,  a 
DRSA-based proof-of-principle tool was successfully 
demonstrated within an experiment that used volunteer 
intelligence analysts and example Signals Intelligence 
(SIGINT) data. The main findings showed that the 
DRSA tool made a sizeable difference by enabling 
analysts to identify a greater proportion of relevant 
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reports (by about 19%) and filter out irrelevant reports. 

The DRSA-based tool offers significant potential 
compared to other multi-criteria and machine learning 
approaches as: it accepts any type of data including 
numbers and text, it is able to deal with incomplete/
missing data and it is able to detect and deal with 
inconsistency problems. In other words, inconsistency 
in DRSA is treated as natural, rather than an outlier 
case. 

The main advantage of the DRSA tool compared to 
other methods is the simplicity of its approach in that 
it uses the learning set to derive understandable If-then 
rules, which can be used to analyse judgements and 
provide feedback with a low training burden. DRSA has 
also been shown to be more accurate than alternative 
classification methods including nearest neighbours, 
support vector machine, decision trees, multi-layer 
perceptron network, fuzzy classification and naïve 
Bayes approach (Chakhar et al, 2016; Hu et al, 2017).

To validate the developed tool a series of trials were 
designed and conducted by the authors, where the task 
is to identify and prioritise intelligence information 
pertaining to a critical target event and that involve 
security professionals.  The paper looks in particular 
to assess the performance of individual and team-
oriented analysts with respect to effectiveness and 
efficiency by examining patterns of ‘hits’ (high score 
given to important reports), ‘misses’ (low scores given 
to important reports) and ‘false alarms’ (high scores 
given to unimportant reports). 

More specifically, this paper reports the results of the 
analysis of noise and bias errors in intelligence analysts' 
judgements using the developed tool as a decision 
support platform.  The main results of the analysis are: 
(1) the use of the developed tool (a) ameliorates slightly 
the effectiveness of individual intelligence analysis 
process and (b) improves considerably its efficiency; 
and (2) the incorporation of group decision support 

improves largely both the effectiveness and efficiency 
of intelligence analysis process.

The rest of this paper is organized as follows. Section 
2 provides the background. Section 3 introduces some 
theoretical aspects. Section 4 addresses tool design 
and development issues. Section 5 presents the tool 
validation and results analysis and discussion. Section 
6 concludes the paper.
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2.	 BACKGROUND

2.1	 INCONSISTENCY IN 
INTELLIGENCE ANALYSIS
Intelligence analysts are typically required to process 
large volumes of data in a timely manner in order 
to extract useful information and detect potential 
security threats. This relies on consistent judgements 
(i.e. identical cases should be treated similarly, if not 
identically) by the analyst in order to efficiently process 
the data and effectively identify useful information. In 
most instances, the analyst will be trained to recognise 
typical threat characteristics when reviewing data. 

For example, the analyst will review data to identify 
individual or group level suspicious activity or 
communications, which may be indicative of larger-
scale criminal or terrorist activities. It is vital that 
analysts, often operating as part of team, are able to 
make consistent judgements about the value of this 
information, so it can be quickly extracted enabling 
appropriate security and counter-terrorism measures to 
be taken. 

However, research and historical evidence (DeRosa, 
2004; Fischhoff & Chauvin, 2011; Renya et al, 2014; 
Heuer & Randolph, 2015) have shown that analysts’ 
judgements are often inconsistent due to the mass 
of data, the variation in types of data, the lack of 
evidence presented, and  the time pressures the analyst 
is operating within. Such inconsistency complicates 
the intelligence analysis process and can result in key 
pieces of data being misclassified or overlooked. The 
potential impact of this is to reduce the effectiveness 
of security and counter-terrorism resources (e.g. 
mistakenly deployed against wrong target), damage 
their reputation (e.g. not identifying a terrorist threat) 
and, in the worst case, result in an increased likelihood 
of criminal and terrorist activities.

2.2	 NOISE AND BIAS ERRORS
Intelligence analyst judgements or decisions reflect 
the fallibility of humans as rational decision-makers. 
Indeed, theory and research amply demonstrate the 
shortcomings of human decision processes, noting a 
myriad of biases and errors (Adame, 2016; Hammond, 
Keeney & Raiffa, 2006; Hills, 2016; Tversky & 
Kahneman, 1974). Since judgements are concerned 
with the selection and ranking of choices, a key 
problem is that in the absence of adequate feedback that 
is both immediate and clear, humans are also unreliable 
decision takers. Research suggests that the unavoidable 
consequence is that professionals (such as intelligence 
analysts) will often take decisions that deviate 
significantly from those of their peers, their own prior 
decisions, and from rules that they themselves claim 
to follow (Kahneman & Rosenfield, 2016; Sigurdsson, 
2016). This inconsistency or errors within judgement 
is mainly due to two types of errors (Kahneman 
2011; Kahneman & Rosenfield, 2016): noise and 
bias. Kahneman & Rosenfield (2016) coined the term 
‘noise’ to describe the chance variability of judgements 
or inconsistent decisions. Another type of error in 
expert judgement is ‘bias’ which indicates consistent 
diversion from the target (Adame, 2016; Hammond 
et al, 2006;). Such bias leads to high variation within 
decision making and can be categorised into:

(i)	 social and cognitive biases, such as anchoring 
bias (when the estimation of a numerical value 
is based on an initial value – anchor – which is 
then insufficiently adjusted to provide the final 
answer) (Tversky & Kahneman, 1974);

(ii)	 status quo bias  (when people ask to get paid 
more for an item they own than they are willing 
to pay for it when they do not own it; their 
disutility for losing is greater than their utility 
for gaining the same amount) (Kahneman et al, 
1991) sunk-cost confirming-evidence (people 
consider sunk cost when making prospective 
decisions) (Arkes & Blumer, 1985); and 

(iii)	 framing bias (when people characterise 
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the initial problem in a certain flawed way) 
(Tversky & Kahneman,1981). 

For an excellent review of cognitive and motivational 
biases in decision risk analysis and means of 
overcoming them (debiasing), the reader is directed 
to the work of Montibeller & von Winterfeldt (2015). 
Here the authors define motivational biases as “those in 
which judgments are influenced by the desirability or 
undesirability of events, consequences”. An example of 
a motivational bias is the deliberate attempt of experts 
to provide optimistic forecasts for a preferred action or 
outcome. Another example is the underestimation of 
the costs of a project to provide more competitive bids 
(Montibeller & von Winterfeldt, 2015).  Research to 
date suggests that an appropriately designed algorithm, 
which corrects and calibrates inconsistent judgements, 
might be used to minimise these errors by improving 
the quality of decisions in a timely manner (Kahneman 
& Rosenfield, 2016).

In studying the effect of noise and bias errors on 
decision accuracy, Kahneman  & Rosenfield (2016) 
distinguished four situations: (i) accurate decision 
(i.e. no noise, neither bias); (ii) noise when there is 
variability within the judgements of different decision 

makers (or from the same decision maker on the same 
data); (iii) bias when judgements are similar but not 
correct (consistently wrong); (iv) noise and bias when 
both  (ii) and  (iii) situations hold. Within the considered 
intelligence analysis context, noise errors hold when 
intelligence reports are judged differently by different 
intelligence agents. The level of noise will increase 
with the distance between the risk levels of the target 
reports as specified by the different agents. In the same 
context, bias errors hold when intelligence reports are 
wrongly judged by the different intelligence agents, 
but they are consistently wrong; in other words, there 
is consensus on the wrong interpretation or decision 
based on the available data. The noise and bias errors 
can jointly hold, leading to additional potential security 
threat implications. 

2.3	 MEASURING AND 
CORRECTING NOISE AND BIAS 
ERRORS
Noise and bias affect accuracy differently.  Figure 1 
illustrates graphically the effect that noise and bias 
can have on accuracy.  In this figure, a Likert risk scale 
of five levels has been assumed where level 5 is the 
highest risk level. Decisions (designed by ✖ in Figure 

Figure 1 Noise and bias situations
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1) in situation (a) are accurate since scores provided 
by different analysts are accurate since that are close to 
one another. The other three situations are inaccurate 
but in distinctive ways. In situation (b), decisions are 
noisy since the scores are widely scattered around the 
correct score (designed by ★ in Figure 1). In situation 
(c), decisions are biased since they miss the correct 
decision but cluster together. In situation (b), decisions 
are both noisy and biased. Note here (as in Kahneman 
& Rosenfield (2016)). that no hypothesis is made that 
the quality of judgment is measurable. 

Noise and bias errors are measured and corrected 
differently.  The noise error can be measured through 
dispersion statistics or in terms of the distance of scores 
to each other. It is important to note that there is no need 
to know the correct answer to measure noise (Kahneman 
& Rosenfield, 2016). One possible solution to correct 
noise error is to aggregate scores using simple rules 
such as average or median/mode. However, average 
rule is not working in the application considered in 
this paper because the risk scale is assumed ordinal. 
Scores can also be transformed into numerical ones 
(using some appropriate transformation methods) and 
then average and other similar aggregation rules can 
be used. The use of rank aggregation techniques is 
another possible solution. In all cases, correction can 
be handled automatically without the need to advice 
analysts.

The bias error can be measured in terms of the distance 
to the correct score. Here, we need to know the correct 
answer to measure bias (Kahneman & Rosenfield, 
2016). The automatic correction of bias error is difficult 
and may complicate the situation (adding more bias or 
noise). A better solution is to ask analysts to revise their 
decisions.

2.4	STRUCTURED ANALYTIC 
TECHNIQUES 
Within the Intelligence Community, professionals 
often rely on a set of Structured Analytic Techniques 
(SAT) for reducing noise and bias. The SAT is a set 
of mental modelling tools of externalizing, organizing 
and evaluating analytic thinking. They aim at providing 
a ‘contrary’ analysis in order to challenge the status 
quo and consensus view of analysts. In doing so, they 
encourage questioning existing equilibrium and status 
quo, promote imaginative thinking, and help to develop 
alternative outcomes, which can all support debiasing 
(Montibeller and Von Winterfeldt, 2015).  In addition, 
the use of a structured process helps in depersonalizing 
arguments and hence can support objective group 
decision making. The proponents of SATs argue that 
they are grounded on the concept of System 1 (intuitive-
based) and System 2 (analytic-based) thinking, where 
they mainly focus on System 2. 

There are about twelve basic SAT that can be broadly 
categorized into diagnostic, contrarian, and imaginative. 
Examples of diagnostic techniques are key assumptions, 
and quality of information checks, and indicators 
and signposts of change. Such diagnostic techniques 
can address cognitive biases such as status quo and 
anchoring type of biases.  Examples of contrarian 
techniques are analysis of competing hypothesis 
(ACH), devil’s advocacy, and what-if analysis, and 
they tend to address status quo and confirmation types 
of biases. Finally, examples of imaginative biases are 
brainstorming, outside-in thinking, and alternative 
future analysis. Again, these SAT tend to address both 
status quo and confirmation types of biases. 

SAT are considered a gold standard in intelligence 
analysis training programs, as they are intended to 
prevent and mitigate against the two main sources of 
errors in judgments; systematic biases, and random 
noise.  The proponents of SAT claim that they improve 
judgment quality through debiasing, organize complex 
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evidence, and promote rigorous and transparent analysis 
(Heuer et al, 2010). The list of SATs is not static. For 
example, in its latest version SATs have expanded to 
55 tools in eight categories (Heuer & Randolph, 2015).

It has been argued that operational research (OR) 
can contribute to ‘connecting the dots’, which is a 
fundamental challenge in intelligence analysis and 
is about selecting and assembling fragmented pieces 
of information to produce a pattern that can improve 
understanding of a potential threat (Fischhoff  & 
Chauvin, 2011; Kaplan, 2011). The proposed solution 
in the next section outlines an OR technique that can 
help in this task.
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3.	 THEORETICAL 
DEVELOPMENTS

3.1	 LIMITATIONS OF 
STRUCTURED ANALYTIC 
TECHNIQUES
The benefits of using SAT in intelligence analysis is 
well recognized. However, it has been argued that 
SAT suffer from flaws in both conception and design 
(Cheng et al, 2018). In particular, they treat bipolar 
bias as unipolar, which may result in over-shooting; 
for example, transferring an under-confidence to over-
confidence and vice versa. Moreover, since they focus 
on problem decomposition, in doing so they may also 
have a negative impact on reliability of assessment, 
which leads to increase of noise, the very type of error 
they intend to overcome in the first place. The same 
authors also argue that SAT have not been subjected 
to rigorous empirical assessment. In other words, it is 
not clear whether in their attempt to solve problems, 
they are creating more problems, or even just being 
ineffective. This is akin to the notion that having 
antibiotics as a drug to cure illness is good as a concept, 
but an over-dose can be toxic. This state of affairs in the 
intelligence domain can either cause wrong decisions 
being made, or cause a startled and paralyzed delayed 
process, which questions their value added to decision 
support. 
In addressing such limitations of SAT, one of the main 
suggestions of Cheng et al (2018) is to establish more 

3	 This project is funded by the Centre for Research and Evidence on Security Threats (CREST, UK):  ESRC Award number ES/N009614/1 received from 
the Economic and Social Research Council (ESRC, UK) and Centre for Research and Evidence on Security Threats (CREST, UK).

explicit set of rules for handling evidence. In the next 
section, we describe a proposed solution that relies on 
provision of explicit rules that are either ‘certain’ or 
‘possible’ based on data related to evaluation of set of 
attributes. 

3.2	 PREFERENCE AND 
BEHAVIOUR LEARNING 
APPROACH
The project3 considered in this paper aims to develop 
and test whether an innovative approach that provides 
feedback to security intelligence analysts, enables them 
to make more consistent decisions. This approach has 
been embedded in a software tool and evaluated in a 
security intelligence analysis context. The developed 
tool relies on the Dominance-based Rough Set 
Approach (DRSA) (Greco et al, 2001). The DRSA 
is a preference learning approach extend classical 
rough set theory (Pawlak, 1982, 1991) to multicriteria 
classification. Rough set theory is a way of addressing 
analysis of imperfect data by taking lower (definitely 
belong) and upper approximations (possibly belong) 
of commonly held attributes between two objects. 
Figure 2 shows graphically a rough set M, its lower 
approximation M* and its upper approximation M*. 
The set difference Bn=M* ∖ M*  between M* and M* is 
called the boundary. The definition of approximation 
sets relies on the dominance principle (that can be seen 
as monotonicity constraints) stated as follows for our 
application: ‘If report Rx is  at least as risky  as  report 
Ry with respect to all  relevant attributes, then report Rx 
should be classified  at least as  risky as report Ry’.

Figure 3 Principle of DRSA
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The DRSA has been broadly applied in a number of 
domains ranging from environment risk assessments, 
maintenance policy definition to an economic risk 
analysis. It is primarily used to assess data where 
decisions have been made and extract rules. Typically, 
this will be by taking an initial set of data with known 
outcomes or decisions (the learning set), applying an 
algorithm to extract rules and then applying these rules 
to predict the outcomes of new data. The advantage 
of this approach is that is means that the outcomes or 
decisions can be predicted for the new data set without 

an extensive decision-making process. This principle is 
illustrated in Figure 3.
The input of DRSA is a decision table representing the 
description of a set of objects (reports) with respect to 
a set of condition and decision attributes. The entries of 
the decision table are attribute-value pairs.  A generic 
representation of decision table is given in Table 1. The 
first column is the objects (intelligence reports in our 
application) number. The last column is the decision 
(risk level in our application) as expressed by the expert 
(analyst in our application). 

In DRSA, the decisions are expressed on ordinal scale. 
In the considered application, we used a Likert scale 
of five levels from Cl1=1 to Cl5=5 where Cl5 is the 
highest risk level. The other columns are condition 
attributes. The value for these attributes is extracted 
from the characteristics of the intelligence reports 
(such as location, frequency, etc.) or computed based 
on the scoring of intelligence reports by the analysts. 
More information about attributes extraction is given 
in Section 4.2.1. 

Table 1 Representation of decision table

Object # Attribute 1 ... Attribute n Decision

R1 12 ... High 4

R2 5 ... Very high 3

R3 15 ... Moderate 4

R4 2 ... Low 1

R5 31 ... Low 5

R6 11 Moderate 2

R7 10 Moderate 2

In order to handle the monotonic dependency between 
conditions and decision at (risk level assignments), 
DRSA uses two collections of union of classes defined 
as follows: 

•	 Clt
≥=∪s≥t Cls: upward union of classes;

•	 Clt
≤=∪s≤t Cls: downward union of classes.

where Clt
≥ and Clt

≤  are positive and negative dominance 
cones in decision space reduced to single dimension. 
Figure 4 shows graphically the definition of union of 
classes. 

The main output of DRSA is a collection of decision 
rules. A decision rule is a consequence relation E 
→ H (read as If E, then H) where E is a condition 
(evidence or premise) and H is a conclusion (decision, 
hypothesis). Each elementary condition is built upon 
a single condition attribute while a consequence is 
defined based on a decision attribute. Three types of 
decision rules may be considered in DRSA: (i) certain 
rules generated from lower approximations; (ii) possible 
rules generated from upper approximations; and (iii) 
approximate rules generated from boundary regions.  

Figure 2  
Lower and upper approximations of rough set M (Pawlak, 1991)

Figure 4 Definition of unions of classes
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Only certain decision rules are considered here. Their 
general structures are as follows:

•	 If condition(s), then Risk Level ≥ Clt

•	 If condition(s), then Risk Level ≤ Clt

The condition part specifies values assumed by one or 
more condition attributes and the decision part specifies 
an assignment to one or more risk levels.  

The quality approximations in DRSA are characterised 
by two basic measures. The first measure is the quality 
of approximation γ of partition Cl={Cl1,...Cl5} by 
means of condition attributes is defined as follows:
γ = Correctly classified objects / Total number of objects 
in the system                                   (1)

The second measure is the accuracy α of the rough-set 
representation of classes computed as follows:

α=Nb of objects in the lower approximation / Nb of 
objects in the upper approximation           (2)

When the upper and lower approximations are equal 
(i.e., boundary region is empty), then  α=1, and 
the approximation is perfect. At the other extreme, 
whenever the lower approximation is empty, the 
accuracy is α=0.

The DRSA has been proven to be a particular efficient 
and effective machine learning approach, when 
compared to other methods such as regression analysis, 
other machine learning or data mining approaches. The 
main advantages are that it works with multiple data 
formats (e.g. text and numbers), can deal with gaps or 
inconsistencies in the data and is simple to understand 
using If-then rules. DRSA has been applied widely in 
non-defence domains and has been shown to provide 
significantly greater accuracy than other machine 
learning methods (e.g. nearest neighbours, support 
vector machine, decision trees).

However, the main advantages of DRSA in intelligence 
analysis context concerns its ability (i) to detect and 
dealt with inconsistent decision and (ii) to ‘mimic’ 
the analyst’s behaviour. The ability of DRSA to detect 
and deal with inconsistent decision is due to the use 
of the dominance relation. This relation advocates that 
the risk level of a given intelligence report cannot be 
lower than the risk level of any other intelligence report 
representing similar or higher thread. The DRSA is 
also able to capture the preference and behaviour of 
analysts.  In this respect, the DRSA is categorized by 
some authors as a preference learning method because 
it is used to build a preference model based on a sample 
of past decisions, via preference representation in terms 
of several If-then rules, for further prescriptive decision 
purposes. These rules should reproduce the behaviour 
of the analysts when applied to assess new and unseen 
intelligence reports.

3.3	 INTELLIGENCE REPORTS 
ASSESSMENT 
By embedding a DRSA capability within intelligence 
analysis software, it has the potential to significantly 
enhance how an intelligence analyst processes data and 
extracts intelligence. In a typical intelligence reports 
assessment exercise, the following basic steps apply 
(see Figure 5):

1.	 The analyst receives a series of reports from 
collection assets containing a number of attributes 
such as a unique identifier, time, date, source, 
geographic location, various text fields or 
imagery depending on the intelligence type. The 
analyst specifies terms of interest e.g. keywords, 
geographical areas, based on the objectives of the 
mission.

2.	 The data reports are presented in an ordered 
dataset, which includes hidden attributes that have 
been derived from the terms of interest, which 
the analyst specified. For example, this could be a 
simple count of analyst specified keywords within 
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each report. This also includes a decision-making 
attribute or dominance/risk level e.g. 1-5 priority 
or high/medium/low risk.  

3.	 An initial risk level is given to each report based 
on the dominance relation. This will ensure that 
reports with similar attributes are within the same 
risk level group.

4.	 The analyst uses initial risk level (derived solely 
on the dominance relation) to prioritise a set of 
interesting reports to review. This represents the 
learning set. Once they have reviewed a report, 
they make a decision and allocate a risk level to 
the report. All reviewed reports that have been 
applied a risk level, represents the learning set. 

5.	 The DRSA algorithm is automatically applied 
to generate classification If-Then rules, which 
are applied to the main data set. For example, if 
a report contains a combination of key words, 
occurs in a particular location and is of a 
certain source, it may be considered high risk.  

6.	 The derived rules are automatically applied to the 
remaining reports that the analyst has not looked 
at yet, giving them a predicted DRSA derived risk 
level.

7.	 The analyst then orders or filters these non-viewed 
reports by risk level enabling them to be prioritised 
and for the high-risk reports to be brought to their 
attention. This speeds up the analyst’s ability to 
search through data to identify critical information 
or intelligence, enhancing overall situational 
awareness. It also means they are less likely to 
waste time exploring intelligence reports that are 
not likely to be of interest to them. 

8.	 The analyst repeats the previous steps until the 
mission is completed and they can provide an 
intelligence summary to their headquarters. 
The DRSA algorithm automatically update the 
risk levels, every time a new report is added and 
assessed or scored respectively. This ensures a 
dynamic updating of the rules and risk levels to 
reflect the analyst’s latest decision-making process. 

Figure 5 Flowchart of typical intelligence reports assessment exercise for single analysts
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The main benefits of a DRSA enabled approach are:

1.	 Analysts can identify high priority or high-risk 
intelligence quickly without being distracted or 
wasting time reviewing low priority or low risk 
intelligence, improving the rate or automating 
the intelligence extraction process and enhancing 
situational awareness.

2.	 Support intelligence analyst training or when 
new analysts join an existing operation, as rules 
generated by an experienced analyst can be used 
and reviewed by more inexperienced analysts.

3.	 Using DRSA derived rules to improve/automate 
emitter signature detection-recognition-
identification processes and communication 
network message sending priorities.

3.4	ACROSS-ANALYSTS 
AGGREGATION STRATEGY 
Team based decision-making, or analysis of input from 
several analysts present a challenge to many machine/
preference learning techniques due to the inherent 
inconsistency that multiple opinions can lead to. This is 
also the case in intelligence analysis are recognised by 
several authors as for example in Kerr et al (1996), Kerr 
& Tindale (2011) and Montibeller & von Winterfeldt 
(2015). Montibeller & von Winterfeldt (2015) advocate 
that some of the cognitive biases may be exacerbated at 
group level (or alleviated in some cases).  The DRSA 
is well suited to dealing with such inconsistences at 
individual level but is not suitable for team decision-
making contexts, such as those regularly operating 
in the intelligence community. Fortunately, recent 
advancements led to the design and development of 
the Dominance-based Rough Set Approach for Groups 
(DRSAfG) as an extension of DRSA to group decision-
making context (Chakhar et al, 2016).

The DRSAfG algorithm permits to monitor individual 
decisions/reactions to data to create rules that are then 
used to score, sort and highlight existing and new 

data for all of the team. Scoring in the group context 
comes in two forms – individual and aggregated (or 
collective). Individual scores use just reports scored 
by the individual analysts, whereas collective scores 
merge the output of all analysts into a group view. 

The basic idea for computing the aggregated score 
relies on the majority rule and veto effect (i.e., minority 
respect), which originated from Social Choice Theory 
and are now well established in decision-making (see, 
e.g., Roy, 1989; Bouyssou (2009)). The majority rule 
is based on decisions taken by a majority vote and veto 
effect is based on decisions taken by a minority vote.  
In Chakhar et al (2016), majority and veto rule are 
implemented trough the two following measures: 

1.	 C(Ri,Clj): concordance index representing the 
‘power’ of analysts that agree on the assignment 
of intelligence report Ri to risk level Clj.

2.	 D(Ri,Clj): discordance index representing the 
‘power’ of analysts that do not agree on the 
assignment of intelligence report Ri to risk level 
Clj.

The computing of these measures uses a comprehensive 
weighting system that reflect the expertise and the 
quality of individual assignments given by each 
analyst as explained in the next subsection.   Then, the 
assignment of intelligence report Ri to a risk level Clj 
holds if and only if:  

σ (Ri,Clj)=C(Ri,Clj)*D(Ri,Clj)≥,                                                                                             
(3)

where λ∈[0.5,1] is the credibility threshold 
representing the minimum value for the credibility 
index σ(Ri,Clj)  for assigning an intelligence report Ri 
to risk level  Clj. The assignment rule above ensures 
that  intelligence report Ri is assigned to risk level Lj if 
and only if:  (i) a majority of analysts, in view of their 
‘powers’,  support this assignment; and (ii) none of the 
analysts that do not support this assignment should 
express too strong disagreement. To identify the overall 
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risk level that should be assigned to a given report,  we 
should first compute σ(Ri,Clj) all risk levels. Then, an 
assignment interval I(Ri) of the form [l(Ri),u(Ri)], where 
l(Ri) and u(Ri) are respectively the lower and upper 
classes to which report Ri can be assigned, is deduced 
from the values of σ(Ri,Clj). Finlay,   if l(Ri)=u(Ri)],  
then overall risk level of intelligence report Ri is equal 
to l(Ri)=u(Ri). Otherwise, some simple rules (such as 
minimum, maximum, median, floor and ceiling) are 
used to reduce the assignment interval I(Ri) into a 
single risk level representing the final and overall score 
of the intelligence report.

3.5	 INCORPORATING THE 
LEVEL OF EXPERTISE OF 
ANALYSTS 
The DRSAfG has the facility to give different team 
members different levels of “power” which means their 
opinions hold more sway in the collective score. The 
definition of the levels of “power” of decision makers 
is a crucial step in group decision making as underlined 
by several authors (Chakhar & Saad, 2014; Cheng et al, 
2018; Herowati et al, 2014, 2017;  Zhang et al, 2014). 

The authors in Chakhar & Saad (2014) enumerated 
several techniques to specify the weights in group 
decision making: (i) weights are defined explicitly by 
a mediator or an external independent person as in 
Leyva-Lopez and Fernandez (2003); (ii) weights are 
defined based on the hierarchical levels of involved 
decision makers; (iii) weights are defined explicitly 
using a given method  as in Herowati et al (2014) and 
Yue (2011); and (iv) weights are inferred from input 
data using some form of regression as in Dias et al 
(2002). 

Each of these techniques have some advantages and 
disadvantages and the selection of the technique to 
use is not obvious. The authors argue that the most 
important characteristic of weights definition method 
is the objectiveness of these weights. In this respect, it 
is advocated that the question is not how to use weights, 

but rather how to objectively quantify them (Cook, 
2006). 

Another important characteristic of weights definition 
methods is the ability of these methods to objectively 
measure the expertise of the decision makers or experts, 
as discussed  in, e.g. Herowati et al (2014), Shanteau & 
Weiss (2014), and Weiss & Shanteau (2003).  Indeed, 
and as pointed out by Herowati et al (2014), more 
experienced decision makers will generally provide 
more consistent decisions. This is confirmed in different 
real-world applications in which the authors were 
involved, as e.g., Mercat-Rommens et al (2015) and 
Saad & Chakhar (2009). With respect to intelligence 
analysis,  Mandel & Barnes (2014) by studying the 
accuracy of forecasts in strategic intelligence, found that 
senior analyst not only did better than junior experts, 
they produced 68% of the forecasts despite constituting 
less than of the analysts. 

An important aspect of the aggregation procedure 
introduced in the previous section is the use of 
comprehensive weighting system permitting to 
measure objectively the ‘powers' of decision makers 
based on input data and scoring processes. In this 
weighting system, the contribution of each analyst to 
the ‘collective’ decision is measured by the quality 
of input data provided by this analyst. The weighting 
system combines both the quality of classification 
and the accuracy of the rough-set representation of 
risk levels. It enhances the weighting system used in 
Chakhar and Saad (2012), which is based on the quality 
of approximation only.  In fact, the accuracy of the 
approximation of a single risk level, say Clt, obtained 
by a given analyst may be equal to 0 which means that 
analyst does not support any assignment of intelligence 
reports to risk level Clt. This fact is well supported by the 
proposed new weighting system. Using just the quality 
of approximation as weights does not allow to take into 
account this fact (since the quality of approximation 
characterizes the whole classification rather than the 
approximations of individual classes).  
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3.6	RESEARCH QUESTIONS 
AND HYPOTHESES

3.6.1	 REDUCING THE TOTAL 
SCORING TIME AND IMPROVING THE 
EFFICIENCY AND EFFECTIVENESS 

The assessment of intelligence reports relies on a 
preference learning method, namely DRSA. The 
working principle of DRSA is similar to classical 
machine learning methods: it uses a subset of data 
(reports in this application) to generate some rules 
permitting to generalise the preference information 
(which takes the form of scores assigned to reports 
here) to the whole dataset (all reports). This working 
principle will naturally reduce the computing time and 
improve the efficiency of analysts since they are not 
required to score all the intelligence reports to reach 
the same conclusion). These facts have been confirmed 
in the previous study reported in Baldwin et al (2016) 
where two groups of analysts reviewed the same set of 
reports, one group with DRSA and one without. Uses of 
DRSA were shown to gain a higher level of situational 
awareness more rapidly and spent more of their time 
reviewing ‘relevant’ data than the control group.  

For the purpose of this paper, the reduction of the 
total scoring time and improvement of efficiency and 
effectiveness are evaluated through three measures, 
introduced hereafter. Let n>0 be the total number of 
reports received over a period T of time (e.g. duration 
of a session) and let TR be the average processing time 
required to analyse an intelligence report by a given 
analyst.   An analyst without DRSA will then require 
an average total processing time of n x TR to score 

all the reports.  By using DRSA,  the analyst needs 
to score only a subset of m<n reports in average; the 
remaining n-m reports will be assessed automatically 
using the decision rules deduced form the scoring of 
the m reports. Then, the reduction of total scoring time 
can be measured as the difference between the allowed 
session time T and m x TR: 

Total Scoring Time  =  T -  (m x TR)                       (4)
In practice, analysts are often under pressure and a 
non-DRSA analyst may not be able to assess all the 
reports during  time period T, with potential security 
threat implications. This holds when the average total 
processing time exceeds the allowed processing time, 
i.e., (n x TR)>T. 

The efficiency of an analyst is computed as the 
difference between 1 and the ratio of the number of 
reports (m) scored by this analyst during period time T 
by the maximum number of explicitly scored reports 
(M) during the same time period, i.e.:

Efficiency  =   1 –  (m / M)                                     (5)

The effectiveness analysts can be  evaluated by 
examining patterns of ‘hits’, ‘misses’ and ‘false alarms’. 
This can be achieved by analysing the final scores 
of intelligence reports with actual scored computed 
by the authors based on the scenario used during the 
evaluation exercise. In this application,  correctly 
identifying intelligence reports with actual scores of 4 
or 5 is considered as a hit while assigning a score of 
1 or 2 to an intelligence report of actual score of 4 or 
5 is considered as miss. False alarms holds when an 

Reports scored  4 or 5 Reports scored  1 or 2

Reports actually scored 
4 or 5

Hits Misses

Reports actually scored 
1 or 2

False Alarms Correct Rejections

Figure 6 Schematic representation of confusion matrix
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intelligence report of actual score of 1 or 2 is scored 
4 or 5.  All these situations are summarized by the 
confusion matrix shown in Figure 6.

The situations shown in Figure 6 are formally designed 
in machine learning literature as follows: 

	y True Positives (i.e. Hits): The cases in which an 
analyst predicted  4 or 5 while the  actual scores 
are 4 or 5.

	y True Negatives (i.e. Correct Rejection): The cases 
in which an analyst predicted  1 or 2 while the  
actual scores are 1 or 2. 

	y False Positives (i.e. False Alarms or Type I Error): 
The cases in which an analyst predicted  4 or 5 
while the  actual scores are 1 or 2. 

	y False Negative (i.e. Misses or Type II Error): The 
cases in which an analyst predicted  1 or 2 while 
the  actual scores are 4 or 5. 

The accuracy for the confusion matrix can be calculated 
by taking average of the values lying across the main 
diagonal, i.e.:

Accuracy  =  True Positives + True Negatives / Total 
Number of Scored Reports                            (6)

In this present application, the accuracy for the confusion 
matrix will be used as a measure of effectiveness. 

Our assumption is that the use of DRSA will permit 
to reduce the total scoring time and also improve 
the efficiency and effectiveness of decision. The first 
hypothesis to be tested is stated as follows:

Hypothesis H1: The use of DRSA-based analysis will 
(i) reduce the average computing time of intelligence 
reports; and (ii) improve the efficiency and effectiveness 
of analysts. 

3.6.2	 CORRECTION/REDUCTION 
OF NOISE AND BIAS ERRORS AT  
INDIVIDUAL LEVEL

Noise and bias errors at individual level arise mainly 
when intelligence analysts take decisions that deviate 
significantly from their own prior decisions. With 
respect to the current application, noise errors can be 
identified by analysing the scores successively provided 
by an analyst in different time points during the same 
work session or for the same project but in different 
time periods. Only the first case is considered in this 
paper. To measure the noise error, we will employ the 
well-known non-parametric statistics  Kendall's tau 
(see Kendall, 1938; Nelsen, 2001), defined as follows. 
Let (S1,t,  S1,t’), (S2,t,  S2,t’),…, (Sn,t,  Sn,t’) the scores of 
intelligence reports R1, R2,...,Rn in time points t and t’. 
Then,  any pair of scores  (Si,t, Si,t’) and (Sj,t, Sj,t’)   are 
said to be: 

	y concordant if (a) Si,t< Si,t’  and Sj,t <Sj,t’ or (b) Si,t> 
Si,t’  and Sj,t >Sj,t’. 

	y discordant if (a) Si,t> Si,t’  and Sj,t <Sj,t’ or (b) Si,t< Si,t’  
and Sj,t >Sj,t’. 

	y neither concordant nor discordant otherwise.

Kendall tau τt,t’ can be applied with or without ties (see 
e.g. Agresti (2010)). The second version of Kendall tau  
between the scores in time points t and t’ is defined as 
follows:

τt,t’ =  (nc – nd ) / [(n0-n1)(n0-n2)]
1/2                              (7)

where n0=n(n-1)/2; nc is the number of concordant 
pairs; nd is the number of discordant pairs;
and n1=Σk nk (nk-1)/2; n2=Σh nh (nh-1)/2 with nk and nh are 
the number of tied values in the kth and hth groups of 
ties in the first and second series of scores, respectively.  
Note that there are other methods for measuring noise 
such as the one proposed by Kahneman, and Rosenfield 
(2016), where a noise index is computed as the 
difference divided by the average of any pair. 
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Kendall's tau lies in the range [-1,1]. If the agreement 
between the scores in two different time points is perfect 
(i.e. no noise error) it is 1. If the disagreement between 
the scores in two different time points is perfect, (i.e. 
scores are the reverse of each other and then all scores 
are noisy) it is -1. If the scores in two different time 
points were independent, then we would expect it to be 
approximately zero. 

Similarly, bias errors can be identified by analysing 
the scores provided by an analyst in a given time point 
with the actual score of the report. If we denote by 
Si

*  (i=1,...,n) the actual score of report Ri, then the 
bias errors between the scores in time point t and the 
actual scores  can be measured using the  Kendall tau 
between the  pairs (S1,t, S1

*), (S2,t, S2
*),…, (Sn,t, Sn

*). The 
description of the values of Kendall's tau in the range 
[-1,1] still applies here but it will concern the scores at 
a given time point and the actual scores. 

Our assumption is that the use of DRSA will permit 
to reduce the number of noise and bias errors.  The 
second hypothesis to be tested is then stated as follows:

Hypothesis H2: The use of DRSA-based analysis will 
reduce the noise and bias errors at individual level. 

3.6.3	 CORRECTION/REDUCTION OF 
NOISE AND BIAS ERRORS AT  TEAM 
LEVEL THROUGH GROUP FEEDBACK

An important question that should be investigated in 
this study is the effect that group decision feedback 
support, as opposed to individual support, may have 
on the quality of decisions taken by an intelligence 
analyst team.  In the considered application, the 
group feedback corresponds to the aggregated scores 
computed using the algorithm proposed by Chakhar et 
al (2016). In this paper, the effect of group feedback on 
the quality of decisions taken by an intelligence analyst 
team is evaluated using the Kendall's W (also known as 
Kendall's coefficient of concordance) non-parametric 

statistics (see e.g. Kendall & Babington Smith, 1939). 
Let  Sit be the score of report Ri at time t where there 
are n reports and m (with m>2)  time points. Then, the 
Kendall's W for noise errors is defined as follows):

W = 12S/m2(n3-n)                                                   (8)
 
where: n is the total number of scored reports; m  is the 
number of time points considered; and S= Σi=1,...,n (Si - 
Ŝ)2 with  Si=Σt=1,...,m Sit is the total score given to report 
Ri, Ŝ=1/nΣi=1,...,n, and Si is the mean value of these total 
scores.  The Kendall's W for bias error is defined in the 
same way but it should also include the actual score of 
report Ri  (which will give m+1 scores for each report).

If Kendall's W is 1, there is no noise or bias errors 
overtime.  If Kendall's W is 0, then there is no overall 
trend of scores over time and scores may be regarded as 
essentially random. Intermediate values of Kendall's W 
indicate a greater or lesser degree of unanimity among 
the scores over time.

Our assumption is will reduce noise and bias errors 
at team level. Then, the following hypothesis will be 
tested during the validation phase.

Hypothesis H3: The use of DRSA-based analysis with 
group feedback will reduce total scoring time as well as 
noise and bias errors.
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4.	 TOOL 
DESIGN AND 
DEVELOPMENT

4.1	 TOOL DESIGN
Figure 7 provides a high-level illustration of developed 
decision tool. The intelligence reports (as .txt files) 
contain a number of attributes (time, date, frequency, 
transmitter, receiver etc.), which are then processed to 
extract additional attributes in order to present them 
in a structured data set. These additional attributes 
could include keyword frequencies, calculated 
distances from a key point, text length, but are also 
influenced by any search terms the user has specified. 
For example, this could include frequencies of key 
words or names, cover-terms and geographical areas 
of interest. 
The structured data then has the DRSA algorithm 
applied to it. This creates an interest score, which 
drives the DRSA algorithm and leads to predicted 
interest levels for the remaining unseen reports. This 
enables the analyst to further prioritise how they 
search through these reports to extract intelligence. 

Throughout this process, the analyst constantly 
updates the search terms and scores new reports, 
which refreshes the interest scores derived from the 
DRSA algorithm.

4.2	SOFTWARE DEVELOPMENT
The software was developed in C++, which provided 
a flexible framework to explore and test different 
configurations for meeting the requirements and 
respond to user testing feedback. Three of the most 
important aspects that would influence the success of 
the tool were the attribute extraction, user interface 
and DRSA configuration.

4.2.1	 ATTRIBUTE EXTRACTION

In order to enable the attribute extraction, the tool 
takes the original .txt file data and derives additional 
attributes by pre-processing the original report data 
to generate additional attributes configured to enable 
the DRSA algorithm. The original report attributes 
(e.g. time, source, frequency) could be used alone 
with the DRSA algorithm, however a greater number 
and fidelity of attributes is likely to improve the  
classification rules within the DRSA algorithm. This 
would lead to more accurate predicted interest levels 

Figure 7 Tool design
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for reports. To generate additional attributes, each 
.txt report would need pre-processing, in accordance 
with the search term specified by the analyst. These 
attributes would need to be in a dominance-based 
structure (i.e. there was a preference for a report with 
more or less of this attribute) to best apply the DRSA 
algorithm.

Various methods were explored deriving additional 
attributes to reflect search terms like keywords. 
This varied from a simple count attribute for each 
user-specified keyword to a single total keyword 
count attribute for all keywords. The former would 
likely enhance the report classification process 
and prediction accuracy but potentially be time-
consuming to run, whilst the latter would likely lead 
to less accurate predictions but be more efficient in 
terms of processing time.

A compromise was reached, whereby three simple 
categories of keywords could be specified by the user 
(names, places, keywords) and preference ordered 

within a list. This would be used to derive three score 
attributes for names, places and keywords to enable 
more accurate report classification but not impacting 
significantly on processing time. This was further 
enhanced by using a weighting factor to allow analysts 
to prioritise keywords, with those word occurring at 
the top of the lists carrying more weight than those at 
the bottom. For example, a single mention of the most 
important person would carry more weight and likely 
lead to a greater name score attribute than multiple 
mentions of the least important person. 

An example of the keyword specifications within the 
tool can be seen in left side of Figure 8.
A time-based attribute was also extracted and tested 
to reflect how an  intelligence analyst’s search terms 
of interest and priorities would change over time. 
Whilst in theory this  would work, user testing 
showed that this time attribute became the dominant 
distinguishing attribute for all reports. This negated 
the ability of DRSA to accurately predict interest 
levels, so this attribute was removed. Following on 

Figure 8 Keywords specification and scoring main interface
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from the experiment, it was recognised that using 
time-bins or phases as an attribute would potentially 
work around this issue.

4.2.2	 USER INTERFACE

The user interface was recognised as being important 
for ensuring the DRSA capability was implemented 
successfully. Key to this was ensuring users allocated 
an interest score to each of the reports they looked 
at to enable DRSA to function. This was done by 
enabling analysts to navigate their way through reports 
via a high-level summary table (see  Figure  8). 
Analysts could double click on any report within the 
table to access the detailed attributes (including text 
content) and specify an interest score and new search 
terms (see Figure 9). The software ensured analysts 
could not close the report window without allocating 
a score. 

4.2.3	 DRSA CONFIGURATION

The way in which the DRSA algorithm were configured 
and interest scores indicated was also key to enabling 
an analyst to use the tool and take advantage of the 

predicted interest levels. Within the Report tab, an 
additional column was included reflecting the predicted 
DRSA  interest levels. These were used by the analysts 
to identify and prioritise unseen reports that were 
potentially of high interest level.

It was recognised that DRSA can generate rules with 
multiple decision states i.e. an unscored report could 
potentially be of multiple interest levels. However, to 
minimise confusion for the analyst, the decision was 
taken to present a single DRSA derived interest level 
only; the highest predicted interest score. Whilst this 
could result in reports being predicted a higher interest 
level than they actually are (a false positive), it was 
felt that in an intelligence context this was better than 
selecting a lower predicted interest (a true negative) and 
potentially missing critical intelligence.

Figure 9 Example report window
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5.	 TOOL 
VALIDATION AND 
ANALYSIS OF 
RESULTS

5.1	 AIM AND DESCRIPTION
The aim of the developed tool is to help the security 
analyst to be:  (a) effective i.e. to reach the right answer 
– a measure of effectiveness based on identification of 
critical target event information, measured by accurately 
scoring, and producing a summary report; and (b) 
efficient i.e. within the minimum time – an efficiency 
measure by which the decision is made (fewer reports 
assessed to reach the same conclusion). A series of trials 
involving simulated intelligence data were conducted to 
test the effectiveness and efficiency of the developed 
tool. The description of these trials is shown in Table 
1. For the purposes of analysis, participants have been 
organized into three groups as follows:

(1)	 Non-DRSA: This is a control group where 
participants have no access to the DRSA. 
Participant of this group have the same main 
interface as the following two groups, but 
there is neither DRSA-based scoring nor the 

aggregated scores.
(2)	 DRSA without feedback: This group has 

access to DRSA-based scoring only. The 
aggregated score is hidden for the participants 
of this group; 

(3)	 DRSA with feedback: This group has access 
to DRSA-based scoring as well the aggregated 
scores.

5.2	 SCENARIO DESIGN
An example scenario was generated, which drew on the 
project team’s experience of developing and supporting 
MOD SIGINT training exercises. 

The scenario was designed to reflect a terrorist attack 
being planned in a Western European city and contained 
terrorist planning, logistics and reconnaissance 
cells. UK EW interception assets had captured radio 
transmissions of RED (terrorist), GREEN (military 
police) and WHITE (civilians) organisations over 
a five-day period and  fed in their initial reports to a 
second line intelligence analysis cell. 

These second line analysts were overwhelmed with 
this data and needed to process these reports to extract 
intelligence pertaining to the RED plans (see Figure 
10).

Table 2 Characterises of conducted trials

Trial Date Group Number Group Type Number of Participants

1 29/03/2018 1 DRSA without feedback 7

2 04/06/2018 2 Non-DRSA, no feedback 8

2 04/06/2018 3 DRSA without feedback 7

2 04/06/2018 4 DRSA with  feedback 7

3 14/06/2018 5 DRSA with  feedback 8

4 31/07/2018 6 DRSA with  feedback 8
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5.3	 TEST DATA GENERATION
Over 450 example SIGINT reports were generated 
within an Excel spreadsheet and exported into individual 
.txt files to be used within the DRSA analysis tool. Each 
report contained a number of attributes as shown in 
Figure 11. In order to test the ability of DRSA to help the 
analysts quickly focus on the RED reports containing 
the intelligence, the majority of the reports generated 

were of GREEN and WHITE nature. The test data was 
modified to represent typical SIGINT report formats, 
which included removing some attributes (e.g. to/from, 
frequency) and including miss-spellings of names and 
places. Whilst this would make it more challenging to 
manually review the reports and extract intelligence, 
it was hoped this would help ability of DRSA to deal 
with data structure with missing attributes.

Figure 10 Scenario analyst scope

Figure 11 Example scenario report 
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5.4	RESULTS AND ANALYSIS

5.4.1	 SOME GENERAL STATISTICS

We provide in this section some general statistics for 
all trial sessions. The considered statistics have been 
computed based on the results obtained at the end of 
the scoring process. These statistics concern (i) the 
number and percentage of received reports; (ii) number 
of explicitly scored reports; (iii) number of attributes 
used; (iv) quality of approximation; and (v) accuracy 
of assignments to risk levels. We mention that the 
quality of approximation is defined by Equation (1) as 
the ratio of all correctly scored reports to all reports 
and the accuracy of the rough-set representation of risk 
levels is computed by Equation (2) as the ratio between 
the number of reports in the lower approximation and 
the number of objects in the upper approximation.  We 
note also that the quality of classification and accuracy 
for non-DRSA participants have been computed using 
all the scored reports as learning examples. 

Table 3 provides the average values of above statistics.  
Based on the data in this table, we can conclude that: 
(i) participants using DRSA have scored much less 
reports (between 17.91% and 22.45%) than those 
with no DRSA (about 65%); (ii)  none of non-DRSA 
participants have scored all the reports; (iii) non-DRSA 
participants have used slightly more attributes (about 
98 attributes) than those using DRSA (between 59 and 

84 attributes in average) about 98 versus ; (iv) there 
is  no significant difference with respect to the number 
of criteria between participants using DRSA without 
feedback and those using DRSA with feedback; (v) 
the quality of classification and accuracy of DRSA 
participants are slightly better than those without 
DRSA; and (vi)   there is  no significant difference 
with respect to quality of classification and accuracy 
between participants using DRSA without feedback 
and those using DRSA with feedback.

5.4.2	 REDUCING THE TOTAL 
SCORING TIME AND IMPROVING THE 
EFFICIENCY AND EFFECTIVENESS 

5.4.2.1  Time Reduction Analysis

Equation (4) has been used to compute the reduction 
of total scoring time defined as the difference between 
the average total scoring  time theoretically required to 
score n=441 reports and the average total scoring  time 
of the reports actually scored by the analysts. The results 
of the non-DRSA group have been used to estimate the 
average processing time TR (used in Equation (4))  of a 
single report as follows. First, for each member of the 
non-DRSA group we computed the average processing 
time of scoring a single report (TR) as the ratio of the 
session duration (which is equal to 90 minutes for all 
participants) by the total number of scored reports. 
The average processing time required to score n=441 

Trial Group
Received reports Scored reports Number 

of 
criteria

Quality 
of 

approx.

Accuracy of  assignments to risk level

Number % Number % 1 2 3 4 5

1 DRSA without 
feedback 441 100 94 21.41 59 0.80 0.60 0.83 0.69 0.85 0.71

2 Non-DRSA 441 100 287 65.00 98 0.70 0.70 0.63 0.59 0.74 0.61

2 DRSA without 
feedback 441 100 89 20.12 84 0.80 0.73 0.68 0.83 0.63 0.88

2 DRSA with  
feedback 441 100 99 22.45 77 0.75 0.66 0.89 0.74 0.75 0.8

3 DRSA with  
feedback 441 100 79 17.91 82 0.92 0.85 0.92 0.83 0.88 0.73

4 DRSA with  
feedback 441 100 91 20.63 90 0.87 0.64 0.77 0.71 0.84 0.88

Table 3 Statistics about final results
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reports  is then obtained by multiplying the estimated 
value of TR by the total number of reports n, i.e. n x 
TR.  The results of this exercise are summarised in 
Table 4, which shows an average processing time of 
0.32 minutes per report  and  an average required total 
processing time of 140.87 minutes.

The reduction of total processing time is then 
computed through Equation (2).  The obtained results 
are summarised in Table 5. This table shows an average 
processing time reduction by about 58.96 minutes.   

5.4.2.2  Efficiency of Analysts

The efficiency of analysts as computed Equation (5)  as 
the difference between 1 and the ratio of the number of 
reports (m) scored by these analysts during period time 

T by the maximum number of explicitly scored reports 
(M) during the same time period.  The results are given 
in Table 5. We note that the maximum number of 
explicitly scored reports is M=287, which corresponds 
to average number of scored reports by non-DRSA 
participants. 

We note that in the case of DRSA groups, the scores of 
all reports is atomically computed based on the rules 
extracted from the explicitly scored reports. Hence, 
the efficiency of analysts is computed with respect to 
non-DRSA participant. This means that values in the 
last column of Table 6 indicates the average efficiency 
ratio of analysts compared to non-DRSA participants. 
This also explains why the efficiency of non-DRSA 
participants is equal to zero in Table 6. 

Participant # 1 2 3 4 5 6 7 8
Average actual 
scoring time of 

a single (TR) 

Average required 
total processing 

time  (n x TR)

Session duration D (minutes) 90 90 90 90 90 90 90 90

Number of scored report ( ns) 237 269 306 254 306 301 338 270

Average scoring time per report (D/nr) 0.38 0.33 0.29 0.35 0.29 0.30 0.27 0.33 0.32 140.87

Table 4 Estimation of average scoring time per report and a required total processing time

Trial Group Total number of reports (n) Total number of scored 
reports (m)

Time Reduction

(T-mTR)

1 DRSA without feedback 441 94 59.92

2 DRSA without feedback 441 101 57.68

2 DRSA with  feedback 441 89 61.52

3 DRSA with  feedback 441 98 58.64

4 DRSA with  feedback 441 103 57.04

Average 97          58.96

Table 5 Calculation of processing time reduction

Trial Group Number of explicitly scored 
reports (m)

Efficiency (1-m/M)

1 DRSA without feedback 94 0.67

2 Non-DRSA 287 0

2 DRSA without feedback 89 0.69

2 DRSA with  feedback 99 0.66

3 DRSA with  feedback 79 0.72

4 DRSA with  feedback 91 0.68

Average 123 0.57

Table 6 Efficiency of analysts at the end of the scoring exercise
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5.4.2.3  ffectiveness of Analysts 

The effectiveness of analysts is evaluated by examining 
patterns of ‘hits’ (i.e. True Positive), ‘misses’ (i.e. False 
Negatives) and ‘false alarms’ (i.e. False Positives)  in the 
identification of important reports (i.e. reports scored 
either 4 or 5) by comparing the scores provided by the 
analysts with the correct scores.  In this application,  
correct scores have been defined by the authors based 
on information provided by the senior intelligence 
expert that designed the scenario. The effectiveness of 
analysts is measured through the scoring accuracy (see 
Equation 6) and computed as the ratio of the number 
of True Positives plus the number of True Negatives 
by the total number of score reports.  Effectiveness 
of analysts  for the different session at the end of the 
scoring exercise is given in Table 7. The analysis of 
Table 7 indicates that the effectiveness of DRSA users 
are better than the effectiveness of non-DRSA users 
are more efficient. Table 7 also shows group feedback 
improves the effectiveness of analysts.

5.4.2.4  Discussion 

Based on the results above,  we can conclude that the 
use of DRSA permits the reduction of the scoring time 
and also improves the efficiency and effectiveness of 
decision. This  confirms the  Hypothesis H1 stated in 
Section 3.6.1: “The use of DRSA-based analysis will 
(i) reduce the average computing time of intelligence 
reports; and (ii) improve the efficiency and effectiveness 
of analysts”.  The reduction of scoring time is due to 
the machine learning aspect of the DRSA since analysts 
are asked to score a reduced set of intelligence reports, 
rather than the systemic scoring of all reports for 

non-DRSA users. An important remark is concerned 
with the minimum number of reports that should be 
scored by the analysts in order to enable DRSA to work 
properly. This is in fact not just specific to DRSA but 
also  relates to all machine learning methods. With 
respect this question, the authors in Legay et al. (2015) 
identified some general guidelines that can be followed 
to obtain the ‘best’ set of learning examples: (i) the 
reports  should be as representative as possible by 
including different specifications and characteristics; 
(ii) the reports should be non-redundant (in terms of 
their evaluation with respect to different attributes); 
(iii) the reports should cover all the risk levels; and 
(iv) the reports parts should ideally be well known to 
the decision maker/expert. The authors in Legay et al. 
(2015) also observe that there was no ideal theoretical 
number of learning examples. A limited number 
of learning examples might lead to a few and very 
generic decision rules and too great number of learning 
examples may lead to a high number of very specific 
and redundant decision rules.

The improvement of efficiency is also due the reduced 
number of reports that should be scored by the analyst. 
The rules inferred by DRSA from explicitly scored 
reports are automatically used to score all existing (or 
incoming reports). The improvement of effectiveness of 
analysts is due to the automatic application of decision 
rules. This will result to the elimination/reduction 
of the number of ‘misses’ (i.e. False Negatives) and 
‘false alarms’ (i.e. False Positives).   This is due to the 
‘algorithmic’ behaviour of decision rules, which are 
applied  with  no need to human intervention. Indeed, 
several authors, e.g. Cheng et al, 2018; Kahneman & 

Trial Group Total Number of Score Reports Accuracy

1 DRSA without feedback 441 0.85

2 Non-DRSA 441 0.72

2 DRSA without feedback 441 0.83

2 DRSA with  feedback 441 0.92

3 DRSA with  feedback 441 0.88

4 DRSA with  feedback 441 0.92

Table 7 Effectiveness of analysts  at the end of the scoring exercise
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Rosenfield, 2016), advocate that algorithms are more 
effective since they lead to the same decision if they 
are applied on the same or similar data while decisions 
specified  by a human being may vary over time 
(e.g. as a result of time pressure, tiredness, loose of 
concentration, presence of external disturbances, work 
pressure, etc.).  Although that  Kahneman & Rosenfield 
(2016) support the idea that algorithms often lead to 
a reduction of noise and bias, they in the same time 
see the application of algorithms as a radical solution 
since they are politically or operationally infeasible. 
Here, we should mention that  the use of decision rules 
is much more flexible than the use of classical formal 
algorithms since decision rules are inferred form the 
input of the analysts and also because the set of decision 
rules evolve over time, along the cognitive behaviour of 
the analysts. 

5.4.3	 IDENTIFICATION AND 
REDUCTION/CORRECTION OF NOISE 
AND BIAS ERRORS 

5.4.3.1  Analyse of Noise and Bias 
Errors at Individual Level

Noise and bias errors are generally considered in 
team-oriented decision-making.  It is also possible to 
identify noise and bias errors with respect to a single 
decision maker by considering the decisions she/he 
made over time. In the present case study, noise and 
bias errors at individual level are identified by analysing 
the scores successively provided by an analyst in 
different time points during the same scoring session.  
As indicated in section 3.6.2, noise and bias errors at 
individual level  are measured using the non-parametric 
statistics  Kendall's tau. Noise errors are then defined 
the agreement level between the scores given at two 
successive time points t and t’. A summary  of  noise 
error for different sessions and participants are given is 
given in Table 8. The analysis of Table 8 indicates that 
the use of DRSA reduces the noise errors. Table 8 also 
indicates that group feedback further reduces the noise 
errors.

Bias errors are defined as the agreement level between 
the scores given at a given time point and the actual 
scores. As underlined earlier, correct scores have been 
defined by the authors based on information provided 
by the senior intelligence expert that designed the 
scenario. A summary of bias error is given in Table 
9. The analysis of Table 9 indicates that the use of 
DRSA reduces the bias errors and indicates that group 
feedback further reduces the bias errors. 

The comparison of the figures in Table 8 and Table 
9 shows that the DRSA is slightly more effective in 
reducing noise errors then bias errors.

5.4.3.2  Analysis of Noise and Bias 
Errors at Team Level

As indicated in section 3.6.3, noise and bias errors 
at team level  are measured using the non-parametric 
statistics  Kendall's W. A summary of noise error for 
different sessions and different groups are given is 
given in Table 10 while a summary of bias errors at 
group level is given in Table 11. The analysis of Table 
10 and Table 11 indicates that group feedback reduces 
the noise errors.  The comparison of the figures in 
Table 10 and Table 11 shows that the DRSA is slightly 

Trial Group Kendall tau

1 DRSA without feedback 0.723

2 Non-DRSA 0.546

2 DRSA without feedback 0.683

2 DRSA with  feedback 0.879

3 DRSA with  feedback 0.915

4 DRSA with  feedback 0.893

Table 8 Summary of noise errors

Trial Group Kendall tau

1 DRSA without feedback 0.656

2 Non-DRSA 0.437

2 DRSA without feedback 0.701

2 DRSA with  feedback 0.82

3 DRSA with  feedback 0.867

4 DRSA with  feedback 0.812

Table 9 Summary of bias errors



32

TOOL VALIDATION AND ANALYSIS OF RESULTS
TAKING DECISIONS ABOUT INFORMATION VALUE

more effective in reducing noise errors then bias 
errors, which confirms the same remark obtained with 
individual analysts. 

5.4.3.3  Discussion 

Based on the results above,  we can conclude that the 
use of DRSA permits the reduction of noise and bias 
errors, confirming thus the  Hypothesis H2 stated in 
Section 3.6.2: “The use of DRSA-based analysis will 
reduce the noise and bias errors at individual level”.  
The use of DRSA significantly reduces noise and bias 
errors because a basic assumption in DRSA is that if 
we have two reports R1 and R2 such that the evaluations 
of R1 on the all attributes are equal or worst then those 
of report R2, then report R1  should be assigned a higher 
risk level than report R2.  Based on this assumptions, 
the DRSA can identify two types of  noise error that 
occur (i) when two reports with same description (i.e. 
with same values on all attributes) are assigned to 
two different risk levels; or (ii) when two reports with 
different description (i.e. one of them is worst or best 
on all attributes then the other) are assigned to the same 
risk level. If during the scoring process the analysts fail 
to respect these rules, then the quality of approximation 

will necessarily less than one, indicating the presence 
of inconsistency. The analysts can then revise her/his 
assignments to correct these noise errors.  We note that 
it is easy to correct this type of inconsistency within 
the developed tool since quality of approximation 
is computed after any modification of in scores of 
any report, so analyst can identify the cause of the 
inconsistency on-the-fly. If the analyst did not revise 
her/his assignment, the DRSA can then reduce this 
error since the  basic DRSA (which implemented in 
the current tool) identifies the different risk levels of 
similar reports specified by the analysts and then pick 
the highest one for all of them. We note that a more 
recent version DRSA proposed in Blaszczynski et al 
(2007) and instead of selecting the highest risk level 
provided by the analyst and assign all of them,  uses 
more advanced rules to identify the risk level of a given 
report.  However, the solution used the basic DRSA is 
more prudent and more appropriate in the considered 
application. 

The identification and measurement of bias errors 
require the availability of the correct answers (scores in 
our case) but, as remarked by Kahneman & Rosenfield 
(2016), correct answers will be known at the end of 
mission, if ever. This was possible in the conducted 
exercise since the correct scores were computed by 
the authors based on input from the scenario designer. 
In practice, however, it is difficult to know in advance 
the correct answer or in real-time during the scoring 
process; correct answers will normally be discovered at 
the end of the mission. Due to this fact, techniques and 
strategy for bias errors reduction should be oriented to 
the reduction or elimination of the sources that may 
lead to bias errors instead of trying to handle bias errors 
themselves. The developed tool can be enhanced better 
anticipate the correct answers in two different ways. 
First, by enriching the learning set by some relevant 
historical reports (that should concern similar missions 
then the one under investigation). These historical 
reports can serve as benchmarks and will be used by 
the DRSA to identify the relevant reports faster based 

Trial Group Kendall W

1 DRSA without feedback 0.805
2 Non-DRSA 0.722
2 DRSA without feedback 0.843
2 DRSA with  feedback 0.858
3 DRSA with  feedback 0.899
4 DRSA with  feedback 0.807

Trial Group Kendall W

1 DRSA without feedback 0.688
2 Non-DRSA 0.795
2 DRSA without feedback 0.7
2 DRSA with  feedback 0.735
3 DRSA with  feedback 0.923
4 DRSA with  feedback 0.784

Table 10 Summary of noise errors at team level

Table 11 Summary of bias errors at team level
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on the rules deduced from these historical reports in 
the beginning of the scoring process. Second, historical 
reports can be used as testing sets to evaluate the quality 
of current scoring process.

The results above also confirm Hypothesis H3 stated 
in Section 3.6.3: “The use of DRSA-based analysis 
with group feedback will reduce total scoring time as 
well as noise and bias errors”.  The main explication 
of  noise and bias errors reduction at team level the 
‘framing’ effect since it has been shown (see e.g. Zhang 
et al, 2014) that individuals in a team-oriented analysis 
tend to follow the group (aggregated) decision, which 
will speed up the processing time. In proposed tool, the 
noise and bias errors reduction relies on the majority 
rule implemented by the aggregation procedure. Indeed, 
the aggregation procedure tends to bring together the 
most frequent decisions and so reduce their dispersion.  
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6 CONCLUSION
The proposed research contributes to the current 
theoretical knowledge base with respect to decision 
support analysis for improving quality of judgements. 
More specifically, the empirical evaluation of 
judgements will contribute to our understanding of 
bias and noise errors inherit when making judgments. 
To the best of our knowledge, the application of the 
concepts of concordance and discordance (which 
originated from Social Choice theory and are now 
well established multicriteria analysis; see Chakhar 
et al, 2016) to implement the majority principle and 
veto effect in a group decision making context has 
never been used in a security intelligence framework. 
Furthermore, we will be able to propose, and validate, 
more advanced capabilities to better exploit the outputs 
of the DRSA.

The output from this work is a validated decision 
support tool that can be used within the intelligence 
analysis community to better understand the 
consistency of their judgements and enable them to 
extract more useful intelligence more efficiently. This 
will improve the ability to detect potential threats and 
mitigate them with effective deployment of resources, 
reducing the risks and overall security threat from 
criminals, terrorists and military opponents. In recent 
years there has been a huge drive on investing in new 
sensors (e.g. CCTV, UAVs) and collecting open-source 
data, which has resulted in significant volumes of 
data that is challenging to process and extract useful 
intelligence from in a timely manner. This is evidence 
now by the variety of calls, most commonly within the 
Defence Community2, to address this issue.

Specifically, the DRSA tool could be used to:

1)	 Inform training practices – by capturing what 
behaviours drive different judgements between 
analysts e.g. What attributes (factors) do 
“good” analysts use to make their decisions?

2)	 Improve decision making – by being 
embedded as a decision aide alongside existing 
intelligence analysis tools to provide feedback 
on the consistency of the analysts’ judgements.

3)	 Inform new standards for intelligence 
processing - for example, informing the new 
standards to be drawn up by the College of 
Policing.
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4	  In a project funded under the UK Ministry of Defence (MoD) Centre for Defence Enterprise (CDE) Autonomy and Big Data competition.

PART III: SOFTWARE AND EXPERIMENT 
PLAN DETAILS:

EXPERIMENTS 
DESIGN & SYSTEM 
SPECIFICATION

1. AIM OF THE EXPERIMENTS 
AND SYSTEM: 
The Dominance-based Rough Set Approach (DRSA) 
is a well-known multicriteria classification method 
(see Appendix A).  We have successfully used this 
method to design, implement and test a tool4 in 
order to help analysts to process large volumes of 
data by capturing the rules and attributes by which 
they prioritised the data (intelligence reports). The 
previously developed tool has been designed for single 
analysts. The present project extends the existing tool 
by adding group decision-making capabilities and 
by incorporating group feedback.  In this report, we 
design a series of experiments to test whether the 
extended DRSA Team tool might improve individual 
performance. More specifically, the aim of the 
developed tool is to help the security analyst to be: 

a) Effective i.e. to reach the right answer – a measure 
of effectiveness based on identification of critical 
target event information, measured by accurately 
scoring, and producing a summary report. 

b) Efficient i.e. within the minimum time – an 
efficiency measure by which the decision is made 
(fewer reports assessed to reach the same conclusion). 

BRIEF ABOUT THE DESIGN OF 
THE EXPERIMENTS: 
The current research will assess the performance of 
individual analysts (IA) with respect to effectiveness 
and efficiency where the task is to identify and 
prioritise intelligence information pertaining to a 
critical target event (Experiment 1).  In Experiment 2, 
we will examine the extent to which effectiveness and 
efficiency of individual decision-making is impacted 
by an awareness of group level decision-making for the 
same target material.

DATA SETS USED:

	y The organisers (Polaris) has a set of reports, where 
it is already known which ones are critical and 
which are not. This assessment information is not 
known t participants.

	y We will assume that if participants rank a report 
as 4 or 5 (on a scale of 1-5) then the information is 
critical. Otherwise, any other ranking is  considered 
non-critical.

	y The organisers also know the right answer for the 
summary report.

All the above information will help us to measure 
effectiveness.

Briefly the scenario of the experiment concerns a 
critical target event (in this instance, a terrorist plot) 
which will not be revealed to the participants other than 
through a large set of intelligence reports. Participants 
will assess these intelligence reports which include 
information that is both relevant and irrelevant with 
respect to the target event. The goal for participants is to 
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extract relevant intelligence knowledge from the data by 
judging the degree of interest/relevance of each report. 
Having completed the judgment task, all participants 
will submit a final summarised report addressing key 
questions (What, Who, Where, How, and When) with 
respect to the critical target event. These answers should 
characterise the nature of the plot (for the purpose of 
testing the methodology, it is assumed here that all 
questions are equally weighted). The performance of 
each IA, or the group (N=30 for Experiment 1 and 40 
for Experiment 2), will be measured by the accuracy 
of responses to the key questions and the number of 
reports analysed. This measure can be captured by 
dividing number of critical reports judged by the time 
elapsed between the beginning of the session and the 
sending of the final reports with the answers. 

Therefore, we will be able to capture two measures:

1.	 The proportion of critical target reports each 
participant has worked on by the end of the 
experiment (i.e. how many reports relating to the 
critical incident they have processed.  

2.	 The number of reports in total processed by an 
individual within a particular time frame is a 
feature of their individual speed of work (i.e. how 
many they work through). Here, please note that 
this measure is different in meaning to the number 
of critical reports they've accessed.  We hypothesis 
that efficiency equals a percentage expressed as ‘ 
A divided by B’.

This measure will also be applied to see how each 
participant is efficient with respect to processing critical 
reports in a given time frame. 

In terms of Dependent Variables (DV) for both 
experiments, the main outcome measure in the study is 
the extent (in terms of effectiveness and efficiency) to 

5	  Noise Index: A noise index for each case, which answered the following question: “By how much do the judgments of two randomly chosen Decision 
Makers (DM) differ?” This amount is expressed as a percentage of their average. Suppose the assessments of a case by two DMs are £600 and £1,000. The average 
of their assessments is £800, and the difference between them is £400, so the noise index is 50% for this pair. We performed the same computation for all pairs of 
DMs and then calculated an overall average noise index for each case. In our case we use ordinal scale (from 1 to 5) instead. So, we will need to be map the ordinal 
to cardinal scale.

which the analyst identifies key features of the plot. This 
will be quantified through the following performance 
measures: 1) how many answers to the summary report 
in terms of What/who/where/how/when questions were 
in fact answered correctly at the end of the simulation 
(an effectiveness measure), and 2) the number of reports 
processed in order to identify the target information (an 
efficiency of the decision making process measure).

The scoring given by each participant will be used to 
compute the degree of noise.; where noise is measured 
as the degree of scatter of the judgements using the 
noise-index indicator proposed by Kahneman and 
Rosenfield (2016)5, as well as other statistical measures 
as explained in Appendix 1. 
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2. MORE DETAILS ABOUT 
SYSTEM ARCHITECTURE AND 
DATA ANALYSIS: 
This section provides more details about both the 
system architecture and how results will be analysed. 

BACKGROUND ABOUT SOFTWARE 
DESIGN AND SYSTEM ARCHITECTURE: 

	y Each analyst will have his/her own session as a 
client to a central system.

	y There is no need that the analysts work together. 
This means that Mark [Polaris] just needs to 
add (i) the aggregation procedure (Note: This 
procedure extends the well-known multicriteria 
classification method DRSA to supports multiple 
decision makers. Brief presentations of DRSA and 
the aggregation procedure are given in Appendices 
2 and 3, respectively); (ii)  a way to collect/send 
scoring between individual analysis and a central 

server; and (iii) add a Summary Tab to the main 
screen permitting Individual analysts specify and 
send their final reports to the central server. The 
architecture of the system is as in Figure 1. Note 
that the aggregation procedure requires inputs from 
at least two different individual analysts.  More 
details are provided in the Appendix 3.

	y The group decision making aspects will be 
gathered centrally in an indirect way through the 
aggregation procedure, which will be located in the 
central server.

	y Individual analysts are not required to have any 
prior knowledge about the aggregation procedure, 
but they will be informed during experiment 2 
that “the group aggregation procedure will allow 
their individual scores of their rankings to be 
combined”.

	y The software should be parameterised in the sense 
that it can permit to display an additional column 

Figure 1: System Architecture T
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in the scoring screen of each Individual analysts 
about group score, or to hide that column.

	y The data will be collected over regular intervals 
of time (or, alternatively, after a given number of 
score reports).

	y Will we know how many of the critical (as opposed 
to lure) reports each participant has analysed by 
the end of the exercise.

	y  All reports fully randomised in terms of 
presentation.  

	y At the end of the session, each analyst will provide 
the software with a final summary.  The final 
summary should be a brief that answers the six 
basic questions of what, when, who, where, and 
how.

3. EXPERIMENT ONE DESIGN: 
NOISE EVALUATION WITHOUT 
GROUP FEEDBACK:
Participants: A minimum of 30 analysts and 
postgraduate students will be recruited and receive 
training in the use of the Client DSRA Team tool.

Procedure:  Participants will be briefed on intelligence 
reports and the developed software.  They will then 
work through a set of intelligence reports (Set A) 
individually. The report data will be designed to reflect 
a range of different intelligence report formats and a 
range of ‘interest level’. For each intelligence report, the 
participants will be required to make a decision about 
the ‘interest level’ and rank the report accordingly. 
These individual judgements will be combined into a 

collective judgement using the aggregation procedure 
and then we can estimate how far an individual diverges 
from group level performance.  The aggregation 
procedure will use inputs from all participants (N=30) 
to compute the group score for each report.

Note that in this experiment, the individuals will not 
have contemporaneous access to group ranking. [Also, 
note also that the aggregation procedure can be repeated 
in different days. This is due to the fact that we do not 
expect all data collection to be achieved in a single 
workshop, since from past experience, when we run 
experimental studies - including live simulations; they 
are usually run over several days in order to obtain the 
numbers necessary for reliable statistical comparisons]. 

Analysis of Results: This approach will allow us to 
look at hits (high score given to important reports), 
and misses (low scores given to important reports), 
and differences by comparing individual results with 
the group assessment. Furthermore, judgements made 
by participants with respect to the ‘interest level’ of 
the intelligence report on a Likert scale will enable 
us to compare individual judgements with each 
other with respect to the two variables of accuracy 
and efficiency as defined in the experiment design 
section. Accuracy is influenced by ‘noise’ (the chance 
variability of judgements or inconsistent decisions), 
and group consensus. Note that in this context although 
participants are working individually, the analysis can 
be performed by comparing individual analysis to the 
group level outcomes.

To facilitate the analysis of results, the DRSA Team 

Report Rank by Analyst 
1

Rank by Analyst 
2

…….. Rank by Analyst 
n

Group Rank

R1 1 2 2 2

…

Rm 5 1 2 3

Table 1: Summary of analysis results
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Tool should offer the possibility to generate an Excel 
spread sheet as in Table 1.  The data in Table 1 are for 
illustration only.

The best way to measure noise is to use the following 
well-known non-parametric statistics:  Kendall's tau, 
Spearman's rho, and the Unweighted and Weighted 
Cohen's kappa.  See Appendix 1 for more details about 
these measures. This will be compared with the noise 
index as described above.

Note: In short, Mark (Polaris)  just needs to add to 
the current version of DRSA Tool: (i) a server/client 
service to collect/send scoring data between the 
analysts (client) and the central server; (ii) develop the 
Aggregation Procedure (See appendix) ; (iii) add the 
Summary tab and (iv) compile the data (best in Excel 
files) that will be used (by UoP Team) for evaluation. 
Aggregation Procedure implements the group decision 
making as per the EJOR paper (Chakhar et al, 2016).

The output of individual as well as overall group 
ranking will be used to construct two matrices 
permitting to measure the agreements levels. The 
first matrix (see Table 2) will provide agreement level 
among individual analysts. There will be four different 
matrices corresponding to the non-parametric statistics 

(namely Kendall’s tau, Spearman's rho, Unweighted  
Cohen's kappa and Weighted  Cohen's kappa). The data 
in Table 2 are for illustration only.

The second matrix will provide the agreement levels 
between individual analysts and the aggregated score 
(see Table 3). The data in Table 3 are for illustration 
only. As shown in Table 3, the four non-parametric 
statistics will be used to measure the individual/group 
agreement level. 

These tables will be used by the Noise & Bias Evaluation 
Tool (NBET)  to measure how group and individuals 
have achieved the target stated at the beginning of this 
report, that is, a) reach the right answer, and b) within 
the minimum time. The architecture and data flow 
within the NBET is shown in Figure 2.

Since the data is collected over intervals of time (or 
a given number of scored reports), we will have two 
types of analyses. The first will be conducted once at 
the end of the experiment using the final results. The 
second will be based on a time series-like analysis. This 
will allow us to measure the evolution of individual 
/ individual and individual / group agreement levels 
across time. The kind of results that we can obtain in 
the second type of analysis is shown in Figure 3.

Non-parametric 
statistics

Analyst 1 Analyst 2 …….. Analyst n

Analyst 1 1 0.8 0.3
Analyst 2 0.8 1 -0.4
…
Analyst n 0.3 -0.4 1

Table 2: Agreement levels between pairs of analysts

Analyst Kendall's tau Spearman's rho Unweighted  Cohen's kappa Weighted  Cohen's kappa
Analyst 1 0.6 0.7 0.3 0.25
…..
Analyst n 0.9 0.95 0.83 0.8

Table 3: Agreement levels between individual analysts and aggregated score
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Figure 2: Data flow

Figure 3: Typical outputs of time series-like analysis results
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As indicated earlier, each analyst should submit a 
final report that summarises his/her scoring process. 
This report provides answers to the five What, Who, 
Where, How, and When questions with respect to the 
critical target event. To construct the overall summary 
report, we first combine the individual summary 
reports as in Table 4. Each cell (Analyst i, Question j) 
in Table 4 contains the response to the question in the 
corresponding column j as specified by the analysts in 
the corresponding row i. 

*NB: Cl = Confidence Level for each question

The response to each of these questions in the overall 
summary report will look like as follows:

Question
Response Confidence level
Response1 75%
Response2 15%
Response3 10%

The first column in this table contains responses given 
by all the analysts. The second columns indicate the 
confidence level associated with each response (since 
the same response may be given by more than one 
analyst). The confidence level can simply be computed 
as the percentage of analysts giving the corresponding 
response.  Naturally, the responses to each question will 
be ordered according to their confidence levels.

 4. EXPERIMENT 2 (EVALUATION 
OF GROUP FEEDBACK AND 
GROUP BIAS):

In this experiment, we will replicate Experiment 1 but 
with additional modification as follows:

We will show participants in real time, through the 
software, how the group ranking is being done in a 
dynamic real time environment (an additional column 
to the existing DRSA column in the scoring screen). 

This means that participants will now have access to 
group level decisions when making their own.

We will also have a group of participants with no access 
to DRSA or group feedback.

This test will help us to measure the effect of showing 
the group ranking (group aggregated score) on 
performance of individuals.

We hypothesise that this additional facility will help 
them to reach accurate decision (measured by quality 
of summarised answers to specific questions), reaching 
high agreement (measured by decrease discrepancy 
or noise in the judgement scores), and at a faster rate 
(measured by number of reports per unit time). We 
should also acknowledge here that it might increase 
‘false’ or inaccurate consensus – and we need to 
determine a rate for that possible negative outcome, 
which will be done during the analysis of the reports.

Analysts Questions
What?/Cl* Who? /Cl Where? /Cl How? /Cl When? /Cl

Analyst 1
…..
Analyst n

   Table 4: Summary Final reports
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Participants: A minimum of 60 (and that really is a 
minimum for between groups) different analysts and 
postgraduate students will be recruited and receive 
training in the use of the Client DSRA Team Tool. 

Design Procedure:  Participants will be briefed on 
intelligence reports and the developed software.  They 
will then run through Set A of reports individually. 
The report data will be designed to reflect a range 
of different intelligence report formats and a range 
of ‘interest level’.  The individual judgements will 
be combined into a collective judgement using the 
aggregation procedure.  

In this experiment, third of the individual analysts 
(n=20) will not have access to global ranking column 
in the scoring screen, the other third (n=20) will have 
access to the additional column. The last third (n=20) 
will have no access to DRSA.

Analysis of Results: This approach will allow us to 
look at hits, misses and false alarms, and differences 
by comparing individual results with the aggregated 
(group) assessment. Furthermore, judgements made by 
participants with respect to the ‘interest level’ of the 
intelligence report on a Likert scale will enable us to 
compare individual judgements with each other with 
respect to the two variables of accuracy and efficiency. 

As part of the analysis, we will construct randomly 
subgroups of n=5 to represent a typical intelligence 
cell. In order to ensure more accurate results, we 
will randomise the groups 3 times which will lead 
to 9 different configurations of groups for those with 
feedback information on group ranking and another 
9 different configurations for those without such 
information. Therefore, this will be fed back to the 
participants (i.e. from the live decisions being made. 
In other words, participants will have an additional 
column is their tool showing (live) the group ranking 
as computed by the aggregation procedure.

The analysis conducted for Experiment 1(Tables 1&2) 

will also be conducted for Experiment 2 for each group. 
Form both experiments, we hypothesize the following:

1.	 That a high agreement on ranking on scoring will 
lead to a high agreement to final summary report 
(i.e. that IAs are rationale in transforming numeric 
score into narrative report).

2.	 That the group-based results will be of higher 
quality than those from IA (i.e. majority of the 
group decisions are better than some individuals), 
and that the majority of ISs with DRSA access 
will perform better than those without. 

3.	 That those IAs with information feedback about 
‘group behaviour’ will do the exercise more 
efficiently.

4.	 That by using our tool with information about 
group behaviour, the participants will be both 
effective and efficient in the decision they take.

5. ADDITIONAL ANALYSIS:
For both experiments, the summary report will be 
compiled at the end of each experiment and this 
information will be used to measure ‘accuracy’ of 
each individual. In addition, within Experiment 2, 
this type of analysis will allow us to verify the effect 
of ‘group bias’ (following the crowd) on individual’s 
performance. 

The ranking results of the report vary across time: The 
ranking of the reports will provide us with an additional 
opportunity to measure the level of agreement across 
time with respect to the number of reports.

The Team bias for a given report can be measured by 
aggregating individual biases and also by measuring 
the difference between the group score of the original 
and altered report. An overall group bias can then be 
measured as the rate of altered reports ranked differently 
by the team. 
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APPENDIX 1

NON-PARAMETRIC STATISTICS 
USED FOR THE ANALYSIS
The following well-known non-parametric statistics 
will be used to measure the agreement levels: 

	y Kendall's tau. Kendall's tau lies in the range [-1,1]. 
If the agreement between the two rankings is 
perfect (i.e. the two rankings are the same) it is 1. 
If the disagreement between the two rankings is 
perfect (i.e. one ranking is the reverse of the other) 
it is -1. If two rankings are independent, then we 
would expect it to be approximately zero. 

	y Spearman's rho . Spearman's rho is in the range 
[-1,1]. A positive Spearman correlation coefficient 
indicates that both rankings vary in the same 
direction. A negative Spearman rho coefficient 
indicates a monotone decreasing relation between 
the two rankings. A Spearman rho coefficient of 
zero indicates that there is no tendency between 
the two rankings.

	y Cohen's kappa. There are two ways of calculating 
Cohen's kappa: unweighted and weighted. The 
weighted kappa is more appropriate for variables 
having more than two categories. In both cases, the 
value of Cohen's kappa lies in [0,1]. Conventionally, 
a kappa of <0.2 is considered poor agreement, 0.21-
-0.4 fair, 0.41--0.6 moderate, 0.61--0.8 strong, and 
more than 0.8 a near complete agreement.

We are familiar with these statistics.  If we get an Excel 
file with the scorings of the reports by all analysts, we 
can easily compute these  statistics.

It is important to mention that these statistics accept 
ordinal data and can deal with ties. Furthermore, they 
take into account the number of levels between any two 
compared scores.

We may also use two additional statistics, namely 
Kendall's W  and/or Fleiss's kappa. The Kendall's W 
(also known as Kendall's coefficient of concordance) is 
used for assessing agreement among multiple rankings. 
The Fless's kappa is an extension of Cohen's kappa to 
evaluate concordance or agreements between multiple 
rankings. The Kendall's W and Fless’s kappa  are 
devoted to compare at least three different rankings. 
In addition, both of them accept ordinal data and can 
deal with ties and also take into account the number of 
levels between compared scores.
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APPENDIX 2  

DRSA
The Dominance-based Rough Set Approach DRSA6  
is a well-known multicriteria classification method.  
As shown in Figure 5, the working mechanism of the 
DRSA is a typical machine learning manner and often 
categorized as ‘preference learning' method.  The DRSA 
takes as input a subset of scored reports as learning 
examples and generates a set of ‘if..., then...’ decision 
rules. First, the analysts should score a collection of 
reports with respect to the considered five level scale. 
The latter defines five preference-ordered classes from 
Cl1

 to Cl5 with an increasing importance level. 

Then, each of these classes is represented in terms 
of its lower and upper approximations. The lower 
approximation of class Clt contains all the reports 
that certainty belong to class Clt while the upper 
approximation of class Clt contains all the reports that 
may belong to Clt. The difference between the upper and 
lower approximations, called boundary (or doubtful) 
region, groups all reports that can be ruled neither in nor 
out as members of class Clt. When the approximation is 
perfect, the lower and upper approximations are equal, 
the boundary will be empty. 

6	  See Greco, S., Matarazzo, B., Słowiński, R.: Rough sets theory for multi-criteria decision analysis. European Journal of Operational Research, 129, 1 
(2001) 1–47.

The obtained approximations are then used to infer a 
set of ‘if..., then’ decision rules. Three types of decision 
rules may be considered in DRSA: (i) certain rules 
generated from lower approximations; (ii) possible 
rules generated from upper approximations; and (iii) 
approximate rules generated from boundary regions. 
Only certain decision rules are considered here. Their 
general structures are as follows:

    IF condition(s) THEN  Importance Level = At Least 
Clt

    IF condition(s) THEN  Importance Level = At Most 
Clt

The condition part specifies values assumed by one 
or more condition attributes and the decision part 
specifies an assignment to one or more decision classes.  
The decision part of certain rule takes the form of an 
assignment to at most or at least class unions. The 
decision part of a possible rule is a union of several 
decision classes. 

The obtained decision rule can finally be used to 
classify the unseen reports.

Figure 4: Principle of DRSA
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APPENDIX 3

AGGREGATION PROCEDURE
The DRSA method has been designed for single 
decision makers. The aggregation procedure extends 
the DRAS to work with multiple decision makers 
(Chakhar et al, 2016). Before applying the aggregation 
procedure, the DRSA method is used to approximate 
the input data provided by each analyst. Then, the 
aggregation procedure is used to construct a collective 
decision table7, which is later fed to DRSA to generate a 
set of collective decision rules. The collective decision 
rules that are used to assign the overall score to all the 
reports.

The basic idea of this procedure is to use the outputs 
of individual classifications to assign to each report x 
an assignment interval [l(x),u(x)] where l(x) and u(x) 
are respectively the lower and upper classes to which 
report x can be assigned, and then some simple rules 
are used to reduce the assignment interval I(x) into a 
single element representing the final and overall score 
of the report. The computation of overall score  relies 
on the majority principle and veto effect.  

The contribution of each analyst to the collective score 
is measured by the quality of input data provided 
by the analyst. The use of input data to deduce the 
contribution of the analysts is generally more objective 
than the other weighting techniques. 

The aggregation procedure is designed to work for two 
or more analysts.  The analysts may share or not the 
evaluation criteria (e.g. keywords, places, people, etc.), 
but they need however to use the same scoring scale.

7	  The decision table is a matrix where the rows stand for reports and columns to criteria (such as keyword, people, etc.). The last column of the decision 
table represents the scores as specified by the analysts.

Reference:
Chakhar, S., Ishizaka, A., Labib, A., Saad, I., 
Dominance-based Rough Set Approach for Group 
Decisions, European Journal of Operational Research, 
Vol 251, pp206-224, 2016.
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